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Abstract. The amplitude of the Dalitz decay π0 → e+e−γ is studied and its model-independent properties
are discussed in detail. A calculation of radiative corrections is performed within the framework of two-
flavor chiral perturbation theory, enlarged by virtual photons and leptons. The lowest meson dominance
approximation, motivated by large NC considerations, is used for the description of the π0–γ∗–γ∗ transition
form factor and for the estimate of the NLO low energy constants involved in the analysis. The two
photon reducible contributions are included and discussed. Previous calculations are extended to the whole
kinematical range of the soft photon approximation, thus allowing for the possibility to consider various
experimental situations and observables.

1 Introduction

With a branching ratio of (1.198 ± 0.032)% [1], the three
body decay π0 → e+e−γ is the second most important
decay channel1 of the neutral pion. The dominant decay
mode, π0 → γγ, with its overwhelming branching ratio of
(98.798 ± 0.032)%, is deeply connected to this three body
decay. The other decay channels related to the anomalous
π0–γ–γ vertex, like π0 → e+e− and π0 → e+e−e+e−, are
suppressed approximately by factors of 10−7 and 10−5,
respectively. Another interest of the Dalitz decay lies in
the fact that it provides information on the semi-off-shell
π0–γ–γ∗ transition form factor Fπ0γγ∗(q2) in the time-
like region, and more specifically on its slope parameter
aπ. The most recent determinations of aπ obtained from
measurements [4–6] of the differential decay rate of the
Dalitz decay,

aπ = −0.11 ± 0.03 ± 0.08 [4] ,
aπ = +0.026 ± 0.024 ± 0.0048 [5] ,
aπ = +0.025 ± 0.014 ± 0.026 [6]
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1 The process π0 → e+e−γ is currently referred to as Dalitz
decay , after Dalitz who first studied it more than fifty years
ago [2], and who was the first to realize its connection with
two photon production in the emulsion events of cosmic rays.
For a nice and instructive historical retrospective, see [3].

are endowed with large error bars, as compared to the
values extracted from the extrapolation of data at higher
energies in the space-like region, Q2 = −q2 > 0.5 GeV2,
obtained by CELLO [7] and CLEO [8],

aπ = +0.0326 ± 0.0026 ± 0.0026 [7] ,
aπ = +0.0303 ± 0.0008 ± 0.0009 ± 0.0012 [8] .

These extrapolations are however model dependent, and
a direct and accurate determination of aπ from the decay
π0 → e+e−γ would offer a complementary source of infor-
mation. Let us mention, in this context, the proposal [9]
of the PrimEx experiment at TJNAF to study the reac-
tion e−γ → e−π0, where the neutral pion is produced in
the field of a nucleus through virtual photons from elec-
tron scattering [10]. Although this process concerns again
virtualities in the space-like region, very low values of Q2,
in the range well below the lowest values attained by the
CELLO experiment, can be achieved upon selecting the
events according to the emission angles of the produced
pion and of the scattered electron [10,9].

On the theoretical side, several studies have addressed
the issue of the radiative corrections to the decay π0 →
e+e−γ in the past. At lowest order, the decay amplitude is
of order O(e3). The next-to-leading radiative corrections
to the total decay rate were first evaluated numerically by
Joseph [11], with the result

Γ rad(π0 → e+e−γ)
Γ (π0 → γγ)

≈ 1.0 × 10−4.

This shows that the radiative contribution is tiny and can
be neglected in the total decay rate. However, the differ-
ential decay rate, which provides the relevant observable
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for the determination of aπ, is sensitive to these radiative
corrections. This problem was extensively studied in [12,
13]. In all cases, the two photon exchange terms were ne-
glected, and some further approximations were made (e.g.
restrictions in the kinematical region and on the energy of
the bremsstrahlung photon). Subsequently, the Dalitz de-
cay was further discussed in connection with the omission
of the two photon exchange contributions. Particularly,
during the 1980s, the controversial question of the actual
size of these contributions was under debate, as well as the
relevance of Low’s theorem in this context, cf. the articles
quoted in [14]. Eventually, the non-interchangeability of
the limits of vanishing electron mass and photon momen-
tum was identified [15] as the origin of the apparent puzzle
raised by the contradictory results obtained previously by
various authors.

Our purpose is to provide a complete treatment of
the next-to-leading radiative corrections to the Dalitz de-
cay, taking into account the theoretical progresses accom-
plished in various aspects related to this issue. For in-
stance, in the studies quoted so far, the pion was taken
as point-like. On the other hand, the leading order ampli-
tude involves the form factor Fπ0γγ∗(q2) with virtualities
up to q2 ∼ M2

π0 , which is within the realm where chi-
ral perturbation theory (ChPT) [16–18] is applicable. The
details of the one loop calculation of the π0–γ–γ∗ vertex
in ChPT can be found in [19]. However, we also need to
consider (among other contributions) the electromagnetic
corrections to Fπ0γγ∗(q2). We are thus led to reformulate
and extend the results described above within the unified
and self-contained framework of ChPT with virtual pho-
tons, as it was formulated in [20,21]. Actually, it is also
quite straightforward to include light leptons in the ef-
fective theory, as described in [22], or, in the context of
semileptonic decays of the light mesons, in [23]. Through-
out, we shall work within the framework of two light quark
flavors, u and d. The corresponding extension to virtual
photons is to be found in [24,25]. However, contributions
of next-to-leading order O(e5) to the amplitude now in-
volve the doubly off-shell π0–γ∗–γ∗ transition form fac-
tor Aπ0γ∗γ∗(q21 , q

2
2), but for arbitrarily large virtualities,

a situation which cannot be dealt with within ChPT. We
shall introduce and use a representation [26,27] of the form
factor Aπ0γ∗γ∗(q21 , q

2
2) that relies on properties of both the

large-NC limit and the short distance regime of QCD. The
same framework also allows us to supplement our analysis
with estimates of the relevant low energy constants, along
the lines of, for instance, [28,27].

The material of this article is organized as follows. The
general properties (kinematics, diagram topologies, ...) of
the amplitude are discussed in Sect. 2. Section 3 is devoted
to the computation of the differential decay rate at next-
to-leading order (NLO). Numerical results are presented
in Sect. 4. A brief summary and conclusions are gathered
in Sect. 5. For reasons of convenience, various technical
details have been included in the form of appendices. Pre-
liminary reports of the present work have appeared in [29,
30].

2 General properties of the Dalitz decay
amplitude

In this section we describe the general structure of the
amplitude for the Dalitz decay π0 → e+e−γ, relevant for
the discussion of the contributions both at leading order,
O(e3), and at next-to-leading order, O(e5).

2.1 Notation and kinematics

The Dalitz decay amplitude Mπ0→e+e−γ is defined as

〈e+(p+, s+)e−(p−, s−)γ(k, λ); out|π0(P ); in〉
= i(2π)4δ(4)(P − p+ − p− − k)Mπ0→e+e−γ , (2.1)

where the transition matrix element has to be evaluated
in the presence of the strong and the electromagnetic in-
teractions. Lorentz covariance allows one to express the
amplitude Mπ0→e+e−γ in the form

Mπ0→e+e−γ

= ū(p−, s−)Γµ(p+, p−, k)v(p+, s+)ε∗µ(k), (2.2)

with

ū(p−, s−)Γµ(p+, p−, k)v(p+, s+) (2.3)

= lim
k2→0

ie〈e+(p+, s+)e−(p−, s−); out|jµ(0)|π0(P ); in〉

given in terms of the electromagnetic current

jµ =
2
3
ūγµu− 1

3
d̄γµd− ψ̄eγµψe + . . . (2.4)

Invariance under parity, charge conjugation, and gauge
symmetry,

kµū(p−, s−)Γµ(p+, p−, k)v(p+, s+) = 0, (2.5)

implies a transverse structure and a decomposition in
terms of four independent form factors2

Γµ(p+, p−, k)
= P (x, y)[(k · p+)pµ− − (k · p−)pµ+]γ5

+ A+(x, y)[/kpµ+ − (k · p+)γµ]γ5

− A−(x, y)[/kpµ− − (k · p−)γµ]γ5

− iT (x, y)σµνkνγ5. (2.6)

The invariant form factors P (x, y), A±(x, y) and T (x, y)
are functions of two independent kinematical variables,
which we have chosen as (m denotes the electron mass,
p2

− = p2
+ = m2)

x =
(p+ + p−)2

M2
π0

, ν2 ≤ x ≤ 1, ν2 =
4m2

M2
π0

,

2 We have omitted additional structures, proportional to kµ,
which vanish upon contraction with the polarization vector
ε∗µ(k). Implicitly, we only consider electromagnetic and strong
interactions, and we assume that there is no P and CP violat-
ing θ term.
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y =
2P · (p+ − p−)
M2
π0(1 − x)

,

−σe(M2
π0x) ≤ y ≤ σe(M2

π0x),

σe(s) =

√
1 − 4m2

s
.

In the pion rest frame, these invariants can be expressed
in terms of the energies of the photon (ω), of the positron
(E+) and of the electron (E−) as

1 − x = 2
ω

Mπ0
,

y =
E+ − E−

ω
.

In terms of the variables x and y, charge conjugation in-
variance implies that the form factors satisfy the symme-
try relations

P (x, y) = P (x,−y), A∓(x, y) = A±(x,−y),
T (x, y) = T (x,−y).

Let us note that the form factors P (x, y), A±(x, y) and
T (x, y) can be projected out from Γµ by means of the
formula

F = Tr
(
ΛµF (/p− +m)Γµ(/p+

−m)
)
, (2.7)

where ΛµF , with F = P,A±, T , are projectors satisfying
k · ΛF = 0. Explicit expressions of these projectors are
given in Appendix A.

In terms of the variables x, y, the differential decay
rate is given by the formula

dΓ =
1

(2π)3
Mπ0

64
(1 − x)|Mπ0→e+e−γ |2dxdy. (2.8)

Expressed in terms of the form factors P , A± and T , the
square of the invariant amplitude (summed over polariza-
tions) reads

|Mπ0→e+e−γ |2
=

∑
polarizations

|Mπ0→e+e−γ |2

=
1
8
M4
π0(1 − x)2

× {
[M2

π0x(1 − y2) − 4m2]

× [|P |2xM2
π0 − 2mP (A+ +A−)∗

− 2mP ∗(A+ +A−) + 2PT ∗ + 2P ∗T ]
+ 2(xM2

π0 − 4m2)[|A+|2(1 + y)2 + |A−|2(1 − y)2]

− 8m2y2(A∗
+A− +A+A

∗
−)

+ 8my(1 + y)(A∗
+T +A+T

∗) (2.9)

− 8my(1 − y)(A∗
−T +A−T ∗) + 8(1 − y2)|T |2}.

In the case m = 0, this reduces to

π0(P )

↘

↗q

γ(k)

e+(p+)

e−(p−)

Fig. 1. One photon reducible diagrams

|Mπ0→e+e−γ |2

=
1
8
M4
π0(1 − x)2

× {
M2
π0x(1 − y2)[|P |2xM2

π0 + 2PT ∗ + 2P ∗T ]

+ 2M2
π0x[|A+|2(1 + y2) + |A−|2(1 − y2)]

+ 8(1 − y2)|T |2}.
As usual, higher order corrections induced by virtual pho-
ton contributions generate infrared singularities, even for
a nonvanishing electron mass m. In order to obtain an in-
frared finite and physically observable (differential) decay
rate, the emission processes of real soft photons have also
to be considered.

2.2 Anatomy of the Dalitz decay amplitude

The contributions to the amplitude Mπ0→e+e−γ rather
naturally separate into two main classes. The first one
corresponds to the Feynman graphs where the electron–
positron pair is produced by a single photon (Dalitz pair).
The leading contribution, of order O(e3), to the decay
amplitude belongs to these one photon reducible graphs.
They involve the semi-off-shell π0–γ–γ∗ vertex Fπ0γγ∗(q2);
see Fig. 1. The second class of contributions corresponds
to the one photon irreducible topologies. They can be
further separated into the one fermion reducible contri-
butions, which represent the radiative corrections to the
π0 → e+e− process (see Fig. 2), and the remaining one
particle irreducible graphs (Fig. 3), starting with the two
photon exchange box diagram; see the second graph on
Fig. 4. Both types of these one photon irreducible contri-
butions to the amplitude involve the doubly off-shell π0–
γ∗–γ∗ vertex Aπ0γ∗γ∗(q21 , q

2
2). They are suppressed with

respect to the lowest order one photon reducible contri-
bution, starting at the order O(e5) with the contributions
depicted on Fig. 4. Let us now discuss consecutively these
different topologies in greater detail.

2.2.1 The one photon reducible contributions

The one photon reducible topologies are shown on
Fig. 1. They contain the leading order contribution to
Mπ0→e+e−γ , and involve only low virtualities of the semi-
off-shell form factor Fπ0γγ∗(q2). The contribution at lead-
ing, O(e3), but also at next-to-leading, O(e5), orders can
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π0 ↘
γ

e−

e+

Fig. 2. One fermion reducible diagrams

thus be fully treated within the framework of ChPT, ex-
tended to virtual photons. The general expression for this
one photon reducible part of the Dalitz decay amplitude
has the form3

M1γR
π0→e+e−γ = ūΓ 1γR

µ (p+, p−, k)vε∗µ(k),

where

Γ 1γR
µ (p+, p−, k)

= +ie2ε ναβµ qαkβFπ0γγ∗(q2)iDT
νρ(q)(−ie)

×Λρ(p−,−p+).

In this and the following expressions, q = p+ + p−. The
form factor Fπ0γγ∗(q2) is related to the doubly off-shell
form factor Aπ0γ∗γ∗(q21 , q

2
2), defined as4∫

d4xeil·x〈0|T (jµ(x)jν(0))|π0(P )〉
= −iεµναβlαPβAπ0γ∗γ∗(l2, (P − l)2), (2.10)

by

Fπ0γγ∗(q2) = Aπ0γ∗γ∗(0, q2).

Here the matrix element on the left hand side can be ob-
tained by means of the LSZ formula from the three point
Green’s function 〈V V A〉, calculated within QCD + QED
(i.e. with the QED corrections included). Furthermore,
DT
µν(q) is the transverse part of the photon propagator

(the longitudinal, gauge dependent, part of the photon
propagator does not contribute),

iDT
µν(q) = −i

gµν − qµqν/q
2

q2[1 +Π(q2)]
,

where Π(q2) is the renormalized vacuum polarization
function (in the on-shell renormalization scheme with
Π(0) = 0), and Λρ(q1, q2) stands for the off-shell one par-
ticle irreducible e+–e−–γ vertex function. For on-shell mo-
menta, q1 = p−, q2 = −p+, it can be decomposed in terms
of the Dirac and Pauli form factors F 1,2(q2),

ūΛµ(p−,−p+)v = ū

[
F 1(q2)γµ +

1
2m

F 2(q2)iσµνqν

]
v,

3 Henceforth, we simply write ū instead of ū(p−, s−), and v
instead of v(p+, s+), whenever no confusion arises.

4 Aπ0γ∗γ∗(q2
1 , q2

2) = Aπ0γ∗γ∗(q2
2 , q2

1).

π0 → γ

e−

e+

Fig. 3. One particle irreducible diagrams

with F 1(0) = 1 and F 2(0) = ae, where ae is the anomalous
magnetic moment of the electron.

Note that the one photon reducible part
Γ 1γR
µ (p+, p−, k) is gauge invariant by itself,

kµΓ 1γR
µ (p+, p−, k) = 0,

and therefore it can be expressed in terms of form factors
P , A±, T . Using e.g. the formulae (2.7), (A.1), (A.2), and
(A.3), one obtains

P 1γR(x, y)

= −e3Fπ0γγ∗(xM2
π0)

1
xM2

π0 [1 +Π(xM2
π0)]

× i
m
F 2(xM2

π0),

A1γR
± (x, y)

= e3Fπ0γγ∗(xM2
π0)

1
xM2

π0 [1 +Π(xM2
π0)]

×iF 1(xM2
π0), (2.11)

T 1γR(x, y)

= e3Fπ0γγ∗(xM2
π0)

1
xM2

π0 [1 +Π(xM2
π0)]

×i
[
2mF 1(xM2

π0) +
xM2

π0

2m
F 2(xM2

π0)
]
.

2.2.2 One fermion reducible and one particle irreducible
contributions

The one fermion reducible and the one particle irreducible
topologies, shown on Fig. 2 and on Fig. 3, respectively,
both start at order O(e5).

Since the one photon reducible part M1γR
π0→e+e−γ of

the invariant amplitude is transverse by itself, the one
fermion reducible and one particle irreducible contribu-
tions M1ψR

π0→e+e−γ +M1PI
π0→e+e−γ together also represent a

transverse subset. However, these two types of contribu-
tions are not transverse when taken separately.

Let us first concentrate on the one fermion reducible
topology. These contributions can be expressed in the form

M1ψR
π0→e+e−γ = uΓ 1ψR

µ (p+, p−, k)vεµ(k)∗,

where
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Fig. 4. One photon irreducible contributions at one loop level

iΓ 1ψR
µ (p+, p−, k)

= (−ie)Λµ(p−, p− + k)iS(p− + k)i
×Γπ0e−e+(p− + k, p+)

+ iΓπ0e−e+(p−, p+ + k)iS(−p+ − k)(−ie)
×Λµ(−p+ − k,−p+). (2.12)

In this formula,

iS(q) =
i

/q −m−Σ(q)

is the full fermion propagator, with

Σ(q) = /qΣV (q2) +ΣS(q2) (2.13)

the fermion self-energy, while Λµ(q1, q2) = γµ + O(α)
and Γπ0e−e+(q1, q2) are the (off-shell) one particle irre-
ducible e+–e−–γ and π0–e−–e+ vertices, respectively. As
we have already mentioned, iΓ 1ψR

µ (p+, p−, k) is not trans-
verse, since Λµ(q1, q2) satisfies the Ward–Takahashi iden-
tity

(q1 − q2) · Λ(q1, q2) = S−1(q1) − S−1(q2). (2.14)

The solution of this identity reads

Λµ(q1, q2) = ΛL
µ(q1, q2) + ΛT

µ (q1, q2), (2.15)

with
(q1 − q2) · ΛT(q1, q2) = 0, (2.16)

and the longitudinal part, which consists of any particular
solution of (2.14), may conveniently be chosen [31] as

ΛL
µ(q1, q2)

=
1
2
(/q1 + /q2)(q1 + q2)µ

ΣV (q22) −ΣV (q21)
q21 − q22

+ γµ

[
1 − 1

2
ΣV (q22) − 1

2
ΣV (q21)

]
+ (q1 + q2)µ

ΣS(q22) −ΣS(q21)
q21 − q22

. (2.17)

The transverse part ΛT
µ (q1, q2) is then parameterized in

terms of eight form factors Ai, i = 1, . . . , 8, corresponding
to the eight available independent transverse tensor struc-
tures T iµ, i = 1, . . . , 8 (we will not reproduce them here;
for a detailed discussion and explicit expressions, see [31,
32])

ΛT
µ (q1, q2) =

8∑
i=1

Ai(q21 , q
2
2 , (q1 − q2)2)T iµ(q1, q2). (2.18)

The decomposition (2.15) of the vertex function
Λ(q1, q2) induces the corresponding decomposition of
Γ 1ψR
µ (p+, p−, k),

Γ 1ψR
µ (p+, p−, k) = Γ 1ψR;T

µ (p+, p−, k)

+Γ 1ψR;L
µ (p+, p−, k), (2.19)

with
kµΓ 1ψR;T

µ (p+, p−, k) = 0 (2.20)

and

kµΓ 1ψR;L
µ (p+, p−, k)

= eΓπ0e−e+(p− + k, p+) − eΓπ0e−e+(p−, p+ + k)
− S−1(p−)S(p− + k)eΓπ0e−e+(p− + k, p+) (2.21)
+ eΓπ0e−e+(p−, p+ + k)S(−p+ − k)S−1(−p+).

Therefore

uk · Γ 1ψR;L(p+, p−, k)v (2.22)
= eu[Γπ0e−e+(p− + k, p+) − Γπ0e−e+(p−, p+ + k)]v.

This non-transverse piece should be cancelled by the con-
tribution u(k·Γ 1PI)v of the one particle irreducible graphs.
In addition, the transverse part Γ 1ψR;T

µ (p+, p−, k) admits
a representation of the type (2.6), with appropriate form
factors F 1ψR;T(x, y), A1ψR;T

± (x, y), and T 1ψR;T(x, y), up
to possible terms proportional to kµ, which cancel when
contracted with εµ(k)∗.

As for the vertex Γπ0e−e+(q2, q1), it can be decomposed
(using Lorentz invariance, the Dirac structure of the in-
verse fermion propagator S−1(q), and charge conjugation
invariance) as

Γπ0e−e+(q2, q1)
= Pπ0e−e+(q22 , q

2
1)γ5 + γ5S

−1(−q1)Aπ0e−e+(q22 , q
2
1)

+ S−1(q2)γ5Aπ0e−e+(q21 , q
2
2)

+ S−1(q2)γ5S
−1(−q1)Tπ0e−e+(q22 , q

2
1), (2.23)

where Pπ0e−e+ , Aπ0e−e+ , and Tπ0e−e+ are scalar form fac-
tors, which, as a consequence of charge conjugation invari-
ance, satisfy the additional relations

Pπ0e−e+(q22 , q
2
1) = Pπ0e−e+(q21 , q

2
2),

Tπ0e−e+(q22 , q
2
1) = Tπ0e−e+(q21 , q

2
2). (2.24)

The form factor Pπ0e−e+ is then related to the on-shell
π0 → e+e− amplitude,

Mπ0→e+e− = u(p−, s−)γ5v(p+, s+)Pπ0e−e+(m2,m2).

In terms of the form factors (2.23) we can write

M1ψR
π0→e+e−γ

= eεµ(k)∗u{Λµ(p−, p− + k)S(p− + k)

×Pπ0e−e+(m2 + 2(k · p−),m2)γ5

+ Pπ0e−e+(m2,m2 + 2(k · p+))γ5S(−p+ − k)
)

×Λµ(−p+ − k,−p+)
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+ Λµ(p−, p− + k)γ5Aπ0e−e+(m2,m2 + 2(k · p−))
+ γ5Λµ(−p+ − k,−p+)

×Aπ0e−e+(m2,m2 + 2(k · p+))}v. (2.25)

At leading order in the fine structure constant α, Γπ0e+e−

is given by

Γπ0e−e+(q2, q1) (2.26)

= −e4εµναβ
∫

d4l

(2π)4
Aπ0γ∗γ∗(l2, (q1 + q2 − l)2)

× lα(q1 + q2)β
(l2 + i0)[(q1 + q2 − l)2 + i0]

γµ

× i

/q2 − /l −m+ i0
γν ,

where Aπ0γ∗γ∗(q21 , q
2
2) is now restricted to its pure QCD

part. The corresponding expression of Γ 1ψR
µ (p+, p−, k)

then reads

iΓ 1ψR
µ (p+, p−, k)

= e5ερσαβ
∫

d4l

(2π)4
Aπ0γ∗γ∗(l2, (P − l)2)

× lαPβ
(l2 + i0)[(P − l)2 + i0]

×
[
γµ

i
/p− + /k −m+ i0

γρ
i

/p− + /k − /l −m+ i0
γσ

− γρ
i

/p− − /l −m+ i0
γσ

i
/p+

+ /k +m+ i0
γµ

]
. (2.27)

The general properties of the form factor Aπ0γ∗γ∗(q21 , q
2
2)

are summarized in Appendix B. Here we only note that the
short distance behavior of Aπ0γ∗γ∗(l2, (P − l)2) in QCD
makes it act as an ultraviolet cut-off, so that the loop in-
tegral on the right-hand side of (2.26) actually converges.

Finally, the one particle irreducible part of the ampli-
tude

M1PI
π0→e+e−γ = uΓ 1PI

µ (p+, p−, k)vεµ(k)∗

starts at the order e5 with the box diagram of Fig. 4,

iΓ 1PI
µ (p+, p−, k) (2.28)

= e5ερσαβ
∫

d4l

(2π)4
Aπ0γ∗γ∗(l2, (P − l)2)

× lαPβ
(l2 + i0)[(P − l)2 + i0]

× γρ
i

/p− − /l −m+ i0
γµ

i

/p− + /k − /l −m+ i0
γσ,

which is also ultraviolet finite. At this order, one verifies
that the sum uΓ 1ψR

µ (p+, p−, k)v+uΓ 1PI
µ (p+, p−, k)v is in-

deed transverse.

3 The NLO differential decay rate

The leading order amplitude corresponds to the O(e3)
one photon reducible contribution, evaluated at lowest or-
der in the extended chiral expansion, i.e. with F 1(q2) =
1, F 2(q2) = Π(q2) = 0, and with the form factor
Aπ0γ∗γ∗(l2, (P − l)2) reduced to its expression for a point-
like pion, i.e. a constant, ALO

π0γ∗γ∗ = −NC/12π2Fπ, fixed
by the chiral anomaly. The leading order expressions of
the form factors P , A± and T are then given, for NC = 3
and according to (2.11), by

PLO(x, y) = 0,

ALO
± (x, y) = − ie3

4π2FπM2
π0

· 1
x
,

TLO(x, y) = − 2ime3

4π2FπM2
π0

· 1
x
. (3.1)

Note that in the limit m → 0 only the form factors ALO
±

survive. The square of the leading invariant amplitude
summed over polarizations is, according to (2.9),

|MLO
π0→e+e−γ |2 =

1
32

e6

π4F 2
π

(1 − x)2

x2 [M2
π0x(1 + y2) + 4m2],

(3.2)
and the corresponding partial decay rates read

dΓLO

dxdy
=

α3

(4π)4
Mπ0

F 2
π

(1 − x)3

x2 [M2
π0x(1 + y2) + 4m2],

dΓLO

dx
=

α3

(4π)4
8
3
Mπ0

F 2
π

(1 − x)3

x2

×σe(xM2
π0)(xM2

π0 + 2m2). (3.3)

The next-to-leading corrections to the differential de-
cay rates will be described as

dΓ
dxdy

= δ(x, y)
dΓLO

dxdy
,

dΓ
dx

= δ(x)
dΓLO

dx
. (3.4)

Knowledge of the corrections δ(x, y) and δ(x) to the Dalitz
plot distributions allows one to extract information on the
QCD part of the form factor Fπ0γγ∗(q2) from the experi-
mentally measured decay distribution. For instance, if the
form factor is approximated by a constant plus linear term

Fπ0γγ∗(q2) = Fπ0γγ∗(0)
[
1 + aπ

q2

M2
π0

+ · · ·
]
, (3.5)

the slope parameter aπ is obtained from

dΓ exp

dx
− δQED(x)

dΓLO

dx
=

dΓLO

dx
[1 + 2xaπ], (3.6)

where the QED part, δQED(x), of the corrections δ(x) will
be specified below.
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For the purpose of the following subsections, we in-
troduce functions δi(x, y) and δi(x), i = 1γR, 1γIR, . . .,
measuring the magnitude of various O(e5) and/or O(e3p2)
corrections dΓ i to the leading order decay rate. In terms of
the corresponding corrections to the invariant amplitudes,
T (x, y) = TLO(x, y) + (δiT )(x, y), etc., one has5

δi(x, y) = −4π2M
2
π0Fπ
e3

x

M2
π0x(1 + y2) + 4m2

×Im{8m(δiT )(x, y) (3.7)

+ [M2
π0x(1 + y)2 − 4m2](δiA+)(x, y)

+ [M2
π0x(1 − y)2 − 4m2](δiA−)(x, y)}

and

δi(x) =
3
8

1
σe(xM2

π0)
(3.8)

×
∫ +σe(xM2

π0 )

−σe(xM2
π0 )

dy
M2
π0x(1 + y2) + 4m2

xM2
π0 + 2m2 δi(x, y).

3.1 NLO one photon reducible corrections

The computation of the corrections belonging to the one
photon reducible type of topology requires the evaluation
of several quantities beyond leading order. Thus, next-
to-leading corrections, of orders O(p6e0) and O(p4e2), to
Fπ0γγ∗(q2), as well as corrections of orders O(p2e0) and
O(p0e2) to the electromagnetic form factors F 1(xM2

π0),
F 2(xM2

π0), and to the vacuum polarization function
Π(xM2

π0), have to be evaluated within the framework
of (extended) ChPT. These corrections involve one loop
graphs with virtual pions, photons and electrons, and local
contributions given in terms of counterterms. The inter-
ested reader may find the details of these calculations in
Appendices C and D. The corresponding NLO corrections
to the Dalitz distribution read

δ1γR(x, y)

= 2Re
[
aChPT
NLO (xM2

π0) −Π(xM2
π0) + F 1(xM2

π0) − 1

+
2xM2

π0

M2
π0x(1 + y2) + 4m2F 2(xM2

π0)
]

(3.9)

and

δ1γR(x) = 2Re
[
aChPT
NLO (xM2

π0) −Π(xM2
π0) + F 1(xM2

π0)

− 1 +
3
2

xM2
π0

M2
π0x+ 2m2F 2(xM2

π0)
]
. (3.10)

The expressions of the various quantities appearing in
these formulae are displayed in (C.21), (D.4), (D.6) and
(D.7) of Appendices C and D. Let us just mention here

5 As usual, the NLO corrections to the decay rate arise from
the interference between the leading and NLO amplitudes. This
explains why there is no contribution involving (δiP )(x, y) in
these expressions, given that PLO(x, y) vanishes.

that at NLO the Dirac form factor F 1(s) develops an in-
frared singularity,

F 1(s)IR div

=
α

2π
ln
(
m2

m2
γ

)
×
{

1 + (s− 2m2)
1

sσe(s)

[
ln
(

1 − σe(s)
1 + σe(s)

)
+ iπ

]}
,

wheremγ is a small photon mass introduced as an infrared
regulator. Thus, the infrared divergent part of the one
photon reducible corrections reads

δ1γR(x, y)IR div

=
e2

(2π)2
ln
(
m2

m2
γ

)
(3.11)

×
{

1 +
(

1 − 2m2

xM2
π0

)
1

σe(xM2
π0)

× ln
(

1 − σe(xM2
π0)

1 + σe(xM2
π0)

)}
.

3.2 One photon irreducible contributions

The evaluation of the contribution δ1γIR(x, y) involves the
QCD form factor Aπ0γ∗γ∗(q21 , q

2
2) for arbitrary virtualities.

This in turn addresses non-perturbative issues beyond the
low energy range covered by ChPT. While the asymptotic
regime can be reached through the short distance proper-
ties of QCD and the operator product expansion [33,34],
there still remains the intermediate energy region, popu-
lated by resonances at the 1 GeV scale, to be accounted
for. If one restricts oneself to approaches with a clear the-
oretical link to QCD, the large-NC framework is almost
the only available possibility6. In [27,26], the form factor
Aπ0γ∗γ∗(q21 , q

2
2) has been investigated within a well defined

approximation to the large-NC limit of QCD, which con-
sists in retaining only a finite number of resonances in
each channel. Details of this approach, as far as the form
factor Aπ0γ∗γ∗(q21 , q

2
2) is concerned, are to be found in Ap-

pendix B. Thus, upon inserting the expression of (B.4) in
the form

ALMD(l2, (P − l)2)

=
Fπ

3M4
V

l2(l − P )2
[

κV
l2(l − P )2

− M2
V + κV

(l2 −M2
V )(l − P )2

− M2
V + κV

l2[(l − P )2 −M2
V ]

+
2M2

V + κV
(l2 −M2

V )[(l − P )2 −M2
V ]

]
into (2.26) and (2.28), the integral over the loop momen-
tum can be done and expressed in terms of the standard

6 Large scale numerical simulations on a discretized space-
time might become an alternative in the future.
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one loop functions B0, C0 and D0 defined in Appendix E.
Here LMD is for lowest meson dominance. It is, however,
much easier, and equivalent7, to proceed within the frame-
work of an effective lagrangian approach using ChPT with
explicit photons and leptons [23], that we now briefly de-
scribe. Thus, we take in (2.26) and (2.28) the leading order
constant expression

ALO
π0γ∗γ∗ = −Nc/12π2Fπ. (3.12)

This is a good approximation only for sufficiently low
loop momentum, l2 � Λ2

H , where ΛH ∼ 1 GeV is the
hadronic scale typical for the non-Goldstone resonance
states. The intermediate and asymptotic ranges are, how-
ever, not treated properly using this effective vertex. One
of the consequences is that the loop integral (2.26) with
this constant form factor is ultraviolet divergent. Within
the framework of an effective low energy theory, the differ-
ence between the exact and the low energy effective vertex
can be taken into account by a counterterm contribution
stemming from the Lagrangian [35,26]

LPe−e+ =
3i
32

(α
π

)2
ψγµγ5ψ

× [χ1〈Q2(DµUU
+ −DµU

+U〉
+χ2〈U+QDµUQ− UQDµU

+Q〉].

Let us note that these counterterms are also necessary to
cure the ultraviolet divergence that arise in the loop inte-
gral of (2.26) with a constant form factor. LPe−e+ gener-
ates a local π0(p) → e−(q)e+(q′) vertex of the form

iΓCT
π0e−e+(q, q′) =

4χ
Fπ

( α
4π

)2
(/q + /q

′)γ5,

or, in terms of the decomposition (2.23),

PCT
π0e−e+(q21 , q

2
2) = −i

8mχ
Fπ

( α
4π

)2
,

ACT
π0e−e+(q21 , q

2
2) = −i

4χ
Fπ

( α
4π

)2
,

TCT
π0e−e+(q21 , q

2
2) = 0. (3.13)

In the above formulae, χ stands for the relevant combina-
tion of the effective couplings,8

χ = −χ1 + χ2

4

= χr(µ) + 3
[

1
d− 4

− 1
2
(ln 4π − γ + 1)

]
, (3.14)

which decomposes into a finite, but scale dependent,
renormalized part χr(µ), and a well defined divergent part

7 The results obtained within the two approaches will differ
by terms of the order O(m2/M2

V ).
8 We use the convention where both the loop functions and

bare couplings are renormalization scale dependent – see also
Appendix E.

[35]. We therefore split the amplitude M1γIR
π0→e+e−γ into

two parts:

M1γIR
π0→e+e−γ = M1γIR; loop

π0→e+e−γ + M1γIR; CT
π0→e+e−γ ,

corresponding to the loop (computed with the constant
form factor ALO

π0γ∗γ∗) and counterterm contributions, re-
spectively. Because M1γIR; CT

π0→e+e−γ is gauge invariant, it can
be decomposed into form factors according to (2.6), with

P 1γIR; CT(x, y) = −i
8mχ
Fπ

(α
π

)2 e

M4
π0(1 − x)2(1 − y2)

,

A1γIR; CT
± (x, y) = 0,

T 1γIR; CT(x, y) = −i
2mχ
Fπ

(α
π

)2 e

M2
π0(1 − x)(1 − y2)

.

For the corresponding decomposition δ1γIR(x, y) =
δ1γIR; CT(x, y) + δ1γIR; loop(x, y), one finds, upon using
(3.7),

δ1γIR; CT(x, y) (3.15)

= 16χ
(α
π

) m2x

(1 − x) (1 − y2)
[
M2
π0x(1 + y2) + 4m2

] .
The interference term of the loop amplitude with the low-
est order one photon reducible amplitude MLO

π0→e+e−γ re-
sults in

δ1γIR; loop(x, y)

=
(α
π

) x

[x(1 + y2) + ν2]
1

(1 − x)2

× Re
{

1
8
(x− 1)2

(
(x− 1)2(y4 − 1) − 4ν2y2)M4

π0D0

+ {[(x− 1)
× ((x− 1)(y − 1)(y2 + 1)(xy − x− y − 1)

−4ν2(y2 − y + 1)
)]

/ [4(y − 1)]}M2
π0C−0

0

− {[(x− 1)
× ((x− 1)(y + 1)(y2 + 1)(xy + x− y + 1)

−4ν2(y2 + y + 1)
)]

/ [4(y + 1)]}M2
π0C+0

0

+ {[(x− 1)
× ((y − 1)2

(
(x− 1)2(y2 + 1) + ν2(x− 2)

)
+ν4)]

/ [4(y − 1)]}M2
π0C−

0

− {[(x− 1)
× ((y + 1)2

(
(x− 1)2(y2 + 1) + ν2(x− 2)

)
+ν4)]

/ [4(y + 1)]}M2
π0C+

0

− ν2 {[((x− 1)(y − 1)2(x(3y − 5) + 2)

+ν2(y − 1)(x(y − 4) + 3) − ν4)]
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/
[
8(y − 1)2

]}M2
π0

m2−
B−

0

+ ν2 {[((x− 1)(y + 1)2(x(3y + 5) − 2)

−ν2(y + 1)(x(y + 4) − 3) + ν4)]
/
[
8(y + 1)2

]}M2
π0

m2
+
B+

0

− ν2

16(−1 + y2)2

× [
2(x− 1)2(y2 − 1)2(x(7 + 3y2) − 10)

+ ν2(x− 1)(y2 − 1)
(
(4 + x)y2 + 11x− 16

)
− ν4 (1 + y2(x(7 + y2) − 9) + ν6(1 + y2)

)]
× M4

π0

m2
+m

2−
B0

0

+ (x− 1)x+
5ν2(x(3 + y2) − 4)

2(y2 − 1)

− ν4
(
(9x− 8)y2 + 7x− 8

)
4(x− 1)(y2 − 1)2

− ν6x

32(x− 1)

(
M2
π0

(y + 1)m2
+

− M2
π0

(y − 1)m2−

)}
. (3.16)

In this formula we have used the shorthand notation

B0
0 ≡ B0(0,m2,m2), B±

0 ≡ B0(m2
±, 0,m

2),

C±
0 ≡ C0(0,m2

±,m
2,m2,m2, 0),

C±0
0 ≡ C0(m2,M2

π0 ,m2
±,m

2, 0, 0),

D0 ≡ D0(m2, 0,m2,M2
π0 ,m2

−,m
2
+, 0,m

2,m2, 0),

where

m2
± = m2 +

1
2
(1 − x)(1 ± y)M2

π0 ,

and B0, C0 and D0 are the standard scalar loop functions
(bubble, triangle and box) listed in Appendix E. Both
δ1γIR; CT(x, y) and δ1γIR; loop(x, y) contain divergences, in
the form of poles at d = 4, contained either in the bare
counterterm χ, or in the loop function B0. From (E.2) and
(E.3), one deduces

δ1γIR; loop(x, y)
∣∣
div

= −48
1

d− 4

(α
π

)
× m2x

(1 − x) (1 − y2)
[
M2
π0x(1 + y2) + 4m2

] . (3.17)

As follows from (3.14) and (3.15), these divergences cancel
in the sum, so that δ1γIR(x, y) is both finite and indepen-
dent of the renormalization scale µ.

In the literature, the explicit calculation of
M1γIR

π0→e+e−γ = M1ψR
π0→e+e−γ + M1PI

π0→e+e−γ , when
considered at all, was discussed in the approximation
m = 0 and assuming the pion to be point-like [14], i.e.
Aπ0→e+e−γ(l2, (P − l)2) = ALO

π0→e+e−γ ; see (3.12). Let

us note that in this case the ultraviolet divergent part
of M1γIR

π0→e+e−γ vanishes. Indeed, the divergent part, for
m = 0, is contained in the expression

M1γIR
π0→e+e−γ; div

= ie5ALO
π0→e+e−γ

∫
d4l

(2π)4
εµναβlαPβ

(
1

l2 + iε

)3

× u(p−)

{
−
(
γρ(/p− + /k)γµ/lγν

2(k · p−)

)

+

(
γµ/lγν(/p+

+ /k)γρ

2(k · p+)

)}
v(p+)ε∗

ρ(k). (3.18)

Upon using the identity

εµναβlαPβγ
µ/lγν = 2i[/l(l · P ) − /P l2]γ5

and the effective substitution lαlβ → Cl2gαβ (where C
depends on the cut-off prescription used to regularize the
divergent integral), one obtains

M1γIR
π0→e+e−γ; div

= −2e5ALO
π0→e+e−γ(C − 1)

∫
d4l

(2π)4

(
1

l2 + iε

)2

× u(p−)

{
−
(
γρ(/p− + /k)/P

2(k · p−)

)

+

(
/P (/p+

+ /k)γρ

2(k · p+)

)}
v(p+)ε∗

ρ(k). (3.19)

The two terms in the curly brackets cancel each other as
a consequence of the identities

(/p− + /k)/Pv(p+) = 2(k · p−)v(p+),

u(p−)/P (/p+
+ /k) = 2(k · p+)u(p−),

and thus the ultraviolet divergences are absent in the limit
m → 0. This limit appears at first sight to be a very good
approximation, because the relevant dimensionless param-
eter, ν2 = (2m/Mπ0)2 	 5.7 × 10−5, is tiny. This indeed
turns out to be the case as far as the corrections to the
total decay rate are concerned. However, when consider-
ing the differential decay rate, this simple argument can
sometimes be misleading, as we discuss in the following
subsection.

3.3 The Low approximation

Let us first briefly comment on the possible approximation
of the above result by the application of the Low theorem.
Since we are dealing with a radiative three body decay, we
can borrow from general results [36] and obtain

Mπ0→e+e−γ = MLow
π0→e+e−γ + O(k, (qi · k)), (3.20)
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with

MLow
π0→e+e−γ

= eεµ(k)∗u

×
[
2pµ− − ae

m (pµ−/k − γµ(p− · k)) − iσµνkν(1 + ae)
2(p− · k)

+
−2pµ+ + ae

m (pµ+/k − γµ(p+ · k)) − iσµνkν(1 + ae)
2(p+ · k)

]
×γ5vPπ0e−e+(m2,m2), (3.21)

where the important point is the absence of contributions
that are independent of kµ in the difference Mπ0→e+e−γ−
MLow

π0→e+e−γ (see Appendix F).
Note that the on-shell amplitude Pπ0e+e−(m2,m2),

evaluated to the order under consideration, reads

Pπ0e+e−(m2,m2) = P loop
π0e+e−(m2,m2) + PCT

π0e+e−(m2,m2),

where

P loop
π0e+e−(m2,m2)

= −i
( α

2π

)2 m

Fπ

[
5 + 3B0(0,m2,m2)

− M2
π0C0(m2,M2

π0 ,m2,m2, 0, 0)
]
.

This means, using (F.2) and (3.7), that the Low amplitude
MLow

π0→e+e−γ generates the following correction:

δLow(x, y)

= 2
(α
π

) ν2x

[x(1 + y2) + ν2]
1

(1 − x)(1 − y2)
× Re[5 + 2χ+ 3B0(0,m2,m2)

−M2
π0C0(m2,M2

π0 ,m2,m2, 0, 0)],

which corresponds exactly to the single pole part of the
complete one photon reducible amplitude M1γIR

π0→e+e−γ =

M1γIR; loop
π0→e+e−γ + M1γIR; CT

π0→e+e−γ for x → 1. When integrated,
the Low contribution to δ(x) becomes

δLow(x)

= 6
(α
π

) ν2x

(2x+ ν2)
1

(1 − x)
1

σe(xM2
π0)

× ln
(

1 + σe(xM2
π0)

1 − σe(xM2
π0)

)
× Re

[
5 + 2χ+ 3B0(0,m2,m2)

− M2
π0C0(m2,M2

π0 ,m2,m2, 0, 0)
]
.

Notice that δLow is suppressed by the factor ν2 and van-
ishes in the limit m → 0. This was the argument for the
conjecture that in this limit δ1γIR does not develop a pole
when x → 1 [14] and the contributions of 1γIR topologies
can be safely omitted. In fact this conjecture is not quite
true for several reasons we shall briefly discuss now.

First, the Low correction is not numerically relevant
for almost the whole phase space. Because of the sup-
pression factor ν2, the corrections δLow(x, y) and δLow(x)
become important only in the experimentally irrelevant
region where 1 − x ∼ ν2 (when y is fixed), or where
1−y2 ∼ ν2 (when x 
 ν2 is fixed), i.e. for |y| ∼ ymax(x) =√

1 − ν2/x. This is in fact no surprise, because it is pre-
cisely this corner of the phase space where Low’s theorem
is applicable. Indeed, the standard textbook derivation of
the Low amplitude involves (and assumes the existence
of) the power expansion of the form factors correspond-
ing to the off-shell π0e+(q̃1)e−(q̃2) vertices Γπ0e−e+(q̃2, q1)
and Γπ0e−e+(q2, q̃1) in powers of q̃2i at the points q̃2i = m2,
where q̃i = qi+k. This means that the relevant expansion
parameter is

∆± =
q̃21,2
m2 − 1 =

2k · q1,2
m2 =

2
ν2 (1 − x)(1 ± y).

Therefore, the O(k) terms in the formula

Mπ0→e+e−γ = MLow
π0→e+e−γ +O(k) (3.22)

are small for ∆± � 1, and not just for 1 − x � 1, as one
could naively expect.

There is another subtlety connected with such an ex-
pansion. According to Low’s theorem, in the region of its
applicability one would gather from (3.22) that

δ1γIR(x, y) − δLow(x, y) = O(1),

with the O(1) term independent of k (recall that the lead-
ing order amplitude MLO

π0→e+e−γ is of the order O(k)).
However, the points q̃2i = m2 do not belong to the domain
of analyticity of our π0e+(q̃1)e−(q̃2) amplitude, because
of the branch cuts starting at q̃2i = m2 due to the inter-
mediate e±γ states. As a result, the asymptotics of the
amplitude for x → 1 will also contain, apart of the pole
terms, non-analytical pieces, like non-integer powers and
logarithms. This means that we can expect

Mπ0→e+e−γ = MLow
π0→e+e−γ + O(k ln k) + O(k) + . . .

rather than (3.22) and, as a result

δ1γIR(x, y) − δLow(x, y)
= O(ln(1 − x)) + O(1) + . . .

The Low correction therefore does not saturate the sin-
gular part of δ1γIR(x, y) for x → 1. This can be verified
explicitly at lowest order. Using the asymptotic form of
the loop functions (cf. Appendix E) we find from (3.16),
for ∆± � 1,

δ1γIR(x, y) − δLow(x, y)

=
(α
π

) 2
ν2

1
1 + y2 + ν2

×
[
((1 − y)2 − ν2) ln

(
1
2
(1 − x)(1 − y)

M2
π0

m2

)
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+ ((1 + y)2 − ν2) ln
(

1
2
(1 − x)(1 + y)

M2
π0

m2

)]
+ O(1) + . . .

To conclude, the Low amplitude does not provide us with
a numerically relevant estimate of δ1γIR(x, y) in the kine-
matical region of interest.

On the other hand, for ∆± 
 1, which is satis-
fied practically in the whole relevant domain of x and y
(with the exception of the region where x ∼ 1 − ν2 or
|y| ∼ ymax(x) =

√
1 − ν2/x with x 
 ν2), we can approx-

imate the correction δ1γIR(x, y) with its m → 0 (x < 1
and |y| < ymax(x) fixed) limit with very good accuracy.
Note that in the case m = 0 the loop integration is in-
frared finite for k �= 0, and the ultraviolet divergences as
well as the counterterm contributions vanish. Using the
corresponding asymptotic formulae for the loop functions
(see Appendix E), the limit can be easily calculated with
the result (cf. [15] where this approximative formula was
published for the first time)

δ1γIR(x, y)
∣∣
m→0

=
(α
π

)[
− x

(1 − x)(1 + y2)
+
π2

6

− ln
(

1
2
(1 − x)(1 − y)

)
ln
(

1
2
(1 − x)(1 + y)

)
− Li2

(
1 − 1

2
(1 − x)(1 − y)

)
− Li2

(
1 − 1

2
(1 − x)(1 + y)

)]
. (3.23)

Notice the presence of the ∼ (1 − x)−1 term, which
stems from the following part of the expression (3.16) for
δ1γIR(x, y)

δ1γIRpole (x, y) =
(α
π

) x2

[x(1 + y2) + ν2]
1

(1 − x)
.

Because the limits m → 0 and x → 1 are not interchange-
able, as pointed out in [15], for m �= 0 the contribution
of such a term is cancelled by the expansion, in powers of
(x− 1), of another term, namely

−
(α
π

) x2

[x(1 + y2) + ν2]
ν6x

32(x− 1)

×
(

M2
π0

(y + 1)m2
+

− M2
π0

(y − 1)m2−

)
,

so that the only pole terms which survive are suppressed
by a factor ν2 according to Low’s theorem. In the limit
m → 0 we also obtain [15]

δ1γIR(x)
∣∣
m→0 (3.24)

= −
(α
π

)[
ln2(1 − x) +

2x
(1 − x)2

ln(1 − x)

+
x(2x2 − 3x+ 3)

(1 − x)3

(
π2

6
− Li2(x)

)
− x(5x+ 3)

4(1 − x)2

]
,

which provides an excellent approximation to the exact
m �= 0 result in the whole relevant range of x.

3.4 Soft photon bremsstrahlung

The virtual photon corrections described in the previ-
ous subsections produce infrared divergences, which were
regularized by introducing the soft photon mass mγ .
As usual, an infrared finite result is obtained at this
order upon adding to the decay rate the real photon
bremsstrahlung correction. This corresponds to the ra-
diative process π0 → e+e−γγB, which cannot be distin-
guished from the non-radiative one for energies of the
bremsstrahlung photon smaller than the detector resolu-
tion ∆E. In the soft photon approximation, the amplitude
of the radiative decay is related to the leading matrix el-
ement by

Mπ0→e+e−γγB

= e

(
p− · ε∗

B(kB)
p− · kB

− p+ · ε∗
B(kB)

p+ · kB

)
MLO

π0→e+e−γ ,

where kB and ε∗
B(kB) are the momentum and polarization

vector of the bremsstrahlung photon, respectively. Squar-
ing the amplitude and summing over polarizations, one
obtains

|Mπ0→e+e−γγB |2

= e2
(

2(p+ · p−)
(p+ · kB)(p− · kB)

− m2

(p+ · kB)2
− m2

(p− · kB)2

)
×|MLO

π0→e+e−γ |
2
.

The corresponding correction appearing in (3.4) is then

δB(x, y)

= e2
∫

|kB|<∆E

d3kB

(2π)32k0
B

×
(

2(p+ · p−)
(p+ · kB)(p− · kB)

− m2

(p+ · kB)2
− m2

(p− · kB)2

)
,

where k0
B =

√
k2

B +m2
γ . The correction δB(x, y) can be

expressed, in terms of the standard integral

J(q, q′) =
∫

|kB|<∆E

d3kB

(2π)32k0
B

1
(q · kB)(q′ · kB)

,

as

δB(x, y)
= e2

(
2(p+ · p−)J(p+, p−) −m2J(p+, p+)

−m2J(p−, p−)
)

= e2
(
(xM2

π0 − 2m2)J(p+, p−) −m2J(p+, p+)

− m2J(p−, p−)
)
.

Let us note that the integral J(q, q′) is not Lorentz
invariant and the result is therefore frame dependent. On
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the other hand, the infrared divergent part of J(q, q′) is
given by the invariant expression

JIR div(q, q′)

=
1

2(2π)2
ln
(

4∆E2

m2
γ

)∫ 1

0

dx
[xq + (1 − x)q′]2

=
1

2(2π)2
ln
(

4∆E2

m2
γ

)
1

λ1/2(s, q2, q′2)

× ln
(
s− q2 − q′2 + λ1/2(s, q2, q′2)
s− q2 − q′2 − λ1/2(s, q2, q′2)

)
,

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the
triangle function and s = (q+q′)2. The infrared finite part
can be transformed to the form

JIR fin(q, q′)

= − 1
2(2π)2

∫ 1

0

dx
[xq + (1 − x)q′]2

xq0 + (1 − x)q′0

|xq + (1 − x)q′|
× ln

(
xq0 + (1 − x)q′0 + |xq + (1 − x)q′|
xq0 + (1 − x)q′0 − |xq + (1 − x)q′|

)
.

In an arbitrary frame we can easily obtain

J(q, q) =
1

2(2π)2
1
q2

[
ln
(

4∆E2

m2
γ

)
+
q0

|q| ln
(
q0 − |q|
q0 + |q|

)]
.

For q �= q′, the calculation of the explicit form of J(q, q′)
is much more complicated. In the center of mass of q and
q′, with q2 = q′2 = m2, the integral JIR fin(q, q′) simplifies
considerably and we obtain

J(q, q′)

=
1

(2π)2
1

sσ(s)

×
{

ln
(

1 + σ(s)
1 − σ(s)

)
×
[
ln
(

4∆E2

m2
γ

)
+

1
2

ln
(

1 − σ(s)2

4

)]
+ Li2

(
1 + σ(s)

2

)
− Li2

(
1 − σ(s)

2

)
− 4χ2(σ(s))

}
,

J(q, q) = J(q′, q′)

=
1

2(2π)2
1
m2

[
ln
(

4∆E2

m2
γ

)
− 1
σ(s)

ln
(

1 + σ(s)
1 − σ(s)

)]
,

where σ(s) = (1 − 4m2/s)1/2 and χ2(x) = 1
2 [Li2(x) −

Li2(−x)] is the Legendre chi-function.
If we interpret ∆E as the photon energy resolution in

the center of mass of the Dalitz pair, we find

δB(x, y) = δBIR div(x, y) + δBIR fin(x, y),

with

δBIR div(x, y)

=
e2

(2π)2
ln
(

4∆E2

m2
γ

)
(3.25)

×
[(

1 − 2m2

xM2
π0

)
1

σe(xM2
π0)

ln
(

1 + σe(xM2
π0)

1 − σe(xM2
π0)

)
− 1
]

and

δBIR fin(x, y)

=
α

π

1
σe(xM2

π0)

×
{(

1 − 2m2

xM2
π0

)[
1
2

ln
(

1 − σe(xM2
π0)

1 + σe(xM2
π0)

)
ln
(
xM2

π0

m2

)
+ Li2

(
1 + σe(xM2

π0)
2

)
− Li2

(
1 − σe(xM2

π0)
2

)
− 4χ2(σe(xM2

π0))
]

+ ln
(

1 + σe(xM2
π0)

1 − σe(xM2
π0)

)}
.

Summing δBIR div(x, y) and δ1γRNLO(x, y)IR div, as given by
(3.25) and (3.11), we explicitly achieve the expected can-
cellation of the infrared divergences,

δBIR div(x, y) + δ1γRNLO(x, y)IR div

=
α

π
ln
(

m2

4∆E2

)
× [1

+
(

1 − 2m2

xM2
π0

)
1

σe(xM2
π0)

ln
(

1 − σe(xM2
π0)

1 + σe(xM2
π0)

)]
.

4 Numerical results

In the previous sections we have classified the NLO cor-
rections according to the general topology of the cor-
responding Feynman diagrams. The complete correction
δNLO(x, y) (see (3.4)) is then given by the sum of the in-
dividual contributions of the one photon reducible, brem-
sstrahlung and one photon irreducible graphs:

δNLO(x, y) = δ1γRNLO(x, y) + δB(x, y) + δ1γIR(x, y).

A similar decomposition holds for δNLO(x). The result-
ing formulae contain several renormalization scale inde-
pendent combinations of the a priori unknown low energy
couplings and of chiral logarithms.

4.1 Inputs

The contributions of the low energy couplings to
δNLO(x, y) and δNLO(x) are contained in δ1γIR; CT(x, y)
and in aChPT

NLO (xM2
π0); see for instance (3.15), (3.9) and

(C.21). We define the scale independent quantities

δLEC
NLO(x, y)

= 2
(

C1 +
e2

64π2 KF +
1
6
C2
M2
π0

M2
π±
x

)
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+ 4χ
(α
π

) ν2x

(1 − x) (1 − y2) [x(1 + y2) + ν2]
,

δLEC
NLO(x)

= 2
(

C1 +
e2

64π2 KF +
1
6
C2
M2
π0

M2
π±
x

)
+ 3χ

(α
π

) ν2x

(1 − x) (2x+ ν2)
1

σe(xM2
π0)

× ln
(

1 + σe(xM2
π0)

1 − σe(xM2
π0)

)
,

which contain the contributions of the low energy con-
stants, with

χ = χr(µ) +
3
2

ln
M2
π0

µ2 .

The differences δknown
NLO = δNLO − δLEC

NLO are expressed in
terms of the known physical observables (and the detec-
tor resolution ∆E) and represent therefore a numerically
unambiguous part of our calculations.

For the combinations C1, Cr
2, and KF , we have rea-

sonable estimates based on resonance approximations, as
described in Appendix C. For χ the LMD approximation
was studied in [26], with the result

χr
LMD(µ) =

11
4

− 4π2 F
2
π

M2
V

− 3
2

ln
(
M2
V

µ2

)
.

For numerical calculation we take the LMD values, with
MV = 770 MeV:

C1 = (2.2 ± 0.3) × 10−2,

KF = −28 ± 8,
Cr
2(µ = MV ) = (1.5 ± 0.5) × 10−1,

χr(µ = MV ) = 2.2 ± 0.7. (4.1)

4.2 Radiative corrections to the differential decay rate

The traditional point of view is to separate from the
complete NLO corrections the pure electromagnetic part
δQED, which includes the 1γR graphs with the virtual
fermion and photon loops only and bremsstrahlung contri-
bution, together with 1γIR diagrams (the latter were usu-
ally omitted in the analysis of the experimental data [4–6];
we shall comment on the consequences of this omission be-
low):

δQED = δ1γR
∣∣
γ,ψ loops + δB + δ1γIR, (4.2)

where, cf. (C.21) and (D.1),

δ1γR
∣∣
γ,ψ loops (x) (4.3)

= δ1γR(x) − 2Re
[
aChPT
NLO (xM2

π0) −Ππ±(xM2
π0)
]
.

Following this point of view we present here separate
plots9 for δ1γRNLO

∣∣∣
γ,ψ loops

(x) + δB(x), where the experi-

9 We do not show δ1γR
NLO

∣∣∣
γ,ψ loops

(x, y)+δB(x, y), because the

y dependence is suppressed here by the factor ν2 for x > ν2,
and is therefore negligible in the relevant region of x.

0 0.2 0.4 0.6 0.8 1

-0.02

0

0.02

0.04

0.06

0.08

δQED − δ1γIR

x

Fig. 5. The traditional QED corrections (without 1γIR contri-
butions) for different detector resolutions ∆E = 10 MeV (solid
curve), 15 MeV (dashed curve) and 30 MeV (dotted curve)

mental situation is parameterized by the detector reso-
lution ∆E (for which we take ∆E = 10 MeV, 15 MeV
and 30 MeV; see Fig. 5), and for δ1γIR(x, y) together with
δ1γIR(x) (depicted in Fig. 6).

In the latter two we use the value of χr(MV ) men-
tioned above. As we have discussed in the previous sec-
tion, δ1γIR(x) can be safely approximated with its m → 0
limit (3.24) for almost the whole range of x; the same is
true for δ1γIR(x, y) for |y| < ymax(x), the difference be-
tween δ1γIR(x, y) and (3.23) can be seen for y ∼ ymax(x)

0 0.2 0.4 0.6 0.8

-0.2

-0.15

-0.1

-0.05

0

δ1γIR(x, y)

x

0 0.2 0.4 0.6 0.8

-0.04

-0.03

-0.02

-0.01

0

δ1γIR(x)

x

Fig. 6. The one photon irreducible corrections (triangle and
box diagrams): the dashed line represents δ(x, 0), the dotted
line δ(x, ymax), and the solid line on the bottom plot δ(x)
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0 0.2 0.4 0.6 0.8

-0.2

-0.15

-0.1

-0.05

0

δ1γIR(x, y)

x

Fig. 7. The difference between δ1γIR(x, ymax) (dotted line) and
δ1γIR(x, ymax)

∣∣
m→0 (dashed line)

in Fig. 7. From these figures we can conclude, in agree-
ment with [14], that the usually neglected 1γIR correc-
tions δ1γIR(x) are in fact important particularly in the
region x � 0.6, where they are in absolute value larger
than 1% (up to ∼ 4% for x ∼ 0.9), and comparable
with δ1γRNLO

∣∣∣
γ,ψ loops

+ δB; the same is true for δ1γIR(x, y),

which is almost independent on y (except for a very nar-
row region near |y| ∼ ymax(x); cf. previous section). The
complete pure electromagnetic corrections δQED(x) and
δQED(x, y) are represented in Fig. 8.

Let us now change the point of view a little bit, and
split the corrections in the way we have described in the
beginning of this section, namely

δNLO = δknown + δLEC
NLO.

Here δknown differs from δQED (with χ set to zero) by
the contribution of Ππ±(xM2

π0) as well as by corrections
stemming from chiral pion loops,

δknown(x, y)
= δQED(x, y)|χ=0

+ 2Re
[
−Ππ±(xM2

π0) + aChPT
NLO (xM2

π0)
]
,

where

aChPT
NLO (l2)

=
M2
π±

16π2F 2
π

×
[
ln
M2
π±

M2
π0

(4.4)

− l2

6M2
π±

(
1
3

+ ln
M2
π±

M2
π0

− 16π2σ2
π+(l2)J̄π+(l2)

)]
.

Separation of the numerically unambiguous part δknown

allows one, at least in principle, to constrain the rele-
vant combinations of the chiral low energy constants Cr

1,
Cr
2 and KF from experiment. Figure 9 shows both δknown

and δNLO, which allows one to appreciate the effect of
the counterterms. The difference δknown(x) − δQED(x) is

particularly important for x � 0.7, where it represents a
correction larger than 1%.

Let us split further

δLEC
NLO = δLEC

LMD + δLEC
QED,

where δLEC
LMD = δLEC

NLO

∣∣
KF =0 is the part for which we have a

theoretical prediction based on the LMD approximation;
δknown +δLEC

LMD is shown in the Fig. 9, the error band stems
from the estimate of the uncertainty of the LMD values
(4.1).

For completeness, we present our theoretical estimate
of δLEC

QED, based on (C.24) (cf. (4.1)),

δLEC
QED(x, y) = δLEC

QED(x) =
e2

32π2 KF = (−8 ± 2) × 10−3.

Note that this value is comparable with the estimated un-
certainty of δLEC

LMD arising from the uncertainties in C1 and
Cr
2(µ = MV ) as given in (4.1).
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-0.1

0

δQED

x

Fig. 8. On the top, the complete electromagnetic corrections
δQED with the same detector resolutions as in Fig. 5. The
plot below shows δQED(x, ymax) (dotted curve) and δQED(x, 0)
(dashed curve)
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δknown

x
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-0.05
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δNLO

x

Fig. 9. The NLO correction δknown(x), without counterterm
contributions (top), and the complete correction δNLO(x) (bot-
tom). The error bars show the uncertainties coming from the
counterterm determinations. The detector resolutions are as in
Fig. 5

4.3 Decay rate

Let us make a brief comment on the total decay rate. At
the leading order we reproduce the old Dalitz result [2]:

ΓLO(π0 → e+e−γ)
Γ (π0 → 2γ)

=
α

π

(
4
3

ln
Mπ0

m
− 7

3
+O(ν2)

)
= 0.01185,

which should be compared with the present experimental
value [1]:

Γ exp(π0 → e+e−γ)
Γ (π0 → 2γ)

= 0.01213 ± 0.00033. (4.5)

As already mentioned in the Introduction, the traditional
radiative corrections to the total decay rate are tiny. The
corrections corresponding to the first and second term in
the decomposition of the QED corrections (4.2) were first
numerically evaluated in [11] and analytically in [12] with
the result:

ΓNLO
QED (π0 → e+e−γ)
Γ (π0 → 2γ)

=
(α
π

)2
(

8
9

ln2 Mπ0

m
− 19

9
ln
Mπ0

m
+ 2ζ(3) +

137
81

− 2
27
π2 +O(ν)

)
= 1.04 × 10−4. (4.6)

Let us note that this formula is not based on the soft pho-
ton approximation, but the whole energy spectrum of the
bremsstrahlung photon is included. A real photon emit-
ted from the pion vertex is not considered. If we take
into account the remaining NLO 1γR (ChPT corrections)
and 1γIR electromagnetic corrections we get an additional
contribution

ΓNLO
ChPT+1γIR(π0 → e+e−γ)

Γ (π0 → 2γ)
= (1.8 ± 0.6) × 10−5, (4.7)

where the error stems from uncertainty of C2.10 Clearly
these two corrections are small in comparison with the
present experimental uncertainty (4.5).

Similarly we could evaluate the corrected rate in the
soft photon approximation. The result then depends on
∆E. For ∆E ∼ 10 MeV, for instance, the result reads
ΓNLO

Γ2γ
	 4 × 10−4.

4.4 Slope parameter

We have now all the elements at hand in order to discuss
both the extraction of the slope parameter from the data,
and the prediction that can be made for it in the frame-
work of the low energy theory. With the help of (3.10),
(C.21), (D.2) and the definition (3.6) we easily find

aπ =
M2
π0

M2
π±

[
1
6
C2 − M2

π±

96π2F 2
π

(
1 + ln

(
M2
π±

M2
V

))
− 1

360

(α
π

)]
, (4.8)

where the individual terms in the square bracket corre-
spond to the counterterm, the charged pion chiral loops,
and the charged pion vacuum polarization function con-
tribution, respectively (the latter we include here only for
the sake of completeness; numerically it is negligible, being
of the order 10−6, and thus can be safely omitted). Using
the previous inputs, we obtain the following theoretical
prediction for the slope parameter:

aπ = 0.029 ± 0.005. (4.9)

As we have noted in the preceding section, previous
experimental analyses, as a rule, did not include the con-
tribution of the two photon exchange (which was treated
as negligible due to the superficial arguments based on the
Low theorem). Therefore, according to the formula (3.6),
the systematic bias due to this omission can be roughly
estimated as, cf. (3.24),

10 Note that the ratio Γ (π0→e+e−γ)
Γ (π0→2γ) is independent of the un-

known constants C1 and KF to the order considered here.
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∆aπ|1γIR = −1
2

dδ1γIR(x)
∣∣
m→0

dx

∣∣∣∣∣
x=0

=
1
8

(α
π

)
(2π2 − 3) .= 0.005. (4.10)

This corresponds to a shift of the central values for aπ
extracted from the Dalitz decay measurements which goes
into the right direction towards the independent CELLO
result.

5 Summary and conclusions

The present work provides a detailed analysis of next-
to-leading order radiative corrections to the Dalitz decay
amplitude. This study involves the off-shell pion–photon
transition form factor, which requires a treatment of non-
perturbative strong interaction effects. We have relied on
representations of this form factor involving zero-width
vector resonances. In contrast to the simplest vector me-
son dominance representation, our approach satisfies var-
ious short distance constraints from QCD. Our analysis
also includes the one photon irreducible contributions,
which were usually neglected. We have shown that, al-
though these contributions are negligible as far as the
corrections to the total decay rate are concerned, they are
however sizeable in regions of the Dalitz plot which are rel-
evant for the determination of the slope parameter aπ of
the pion–photon transition form factor. We have also ob-
tained a prediction for aπ which is in good agreement with
the determinations obtained from the (model dependent)
extrapolation of the CELLO and CLEO data. The present
difference with the central values directly measured in the
latest Dalitz decay experiments can be ascribed to the
omission of the radiative corrections induced by the one
photon irreducible contributions. Unfortunately, the ex-
perimental error bars on the latest values of aπ extracted
from the Dalitz decay are still too large to make a com-
parison with the CELLO and CLEO values meaningful.
Nevertheless, we think that a precise measurement of aπ
which would not rely on any kind of extrapolation remains
an interesting issue. Hopefully, future experiments, like the
one proposed by the PrimEx collaboration at TJNAF, will
improve the situation in this respect.
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Appendix A: Form factor projectors

Here we list the projectors ΛµF which allow one to obtain
the form factors F = P , A± and T from (2.7). One possi-
ble choice is

ΛµP =
1

2∆2δ2
iεµναβkνp+αp−β

− m

4∆4 (k · q)(k · δ)[γµ(k · q) − qµ/k]γ5 (A.1)

+
m

4∆4δ2
[2∆2 − q2(k · δ)2][γµk · δ − δµ/k]γ5

− 1
4∆2δ4

[2∆2 − ((k · q)2 − (k · δ)2)δ2]∆µγ5,

ΛµA± =
m

2∆2δ2
iεµναβkνp+αp−β

∓ 1
16∆4 [2∆2 + q2(k · (q ∓ δ))(k · δ)]

× [γµ(k · q) − qµ/k]γ5

− q2

32∆4δ2

× [4∆2 − 2(k · (q ∓ δ))(k · q)δ2
+ m2(k · (q ∓ δ))2][γµk · δ − δµ/k]γ5

− m

8∆4δ2

× [4∆2 − 2(k · (q ∓ δ))(k · q)δ2
+ m2(k · (q ∓ δ))2]∆µγ5, (A.2)

ΛµT =
1

4∆2 iεµναβkνp+αp−β , (A.3)

where we have introduced the shorthand notation q =
p+ + p−, ∆ = (k · p+)p− − (k · p−)p+, and δ = p+ − p−.
In the limit m → 0 these expressions simplify to the form

ΛµP =
1

2∆2δ2
iεµναβkνp+αp−β (A.4)

− 1
2∆2δ4

[∆2 − 2(k · p+)(k · p−)δ2]∆µγ5,

ΛµA± = ∓ 1
16∆4 [2∆2 + q2(k · (q ∓ δ))(k · δ)]

× [γµ(k · q) − qµ/k]γ5

− q2

32∆4δ2
[4∆2 − 2(k · (q ∓ δ))(k · q)δ2]

× [γµk · δ − δµ/k]γ5, (A.5)

ΛµT =
1

4∆2 iεµναβkνp+αp−β . (A.6)

Appendix B: The pion–photon–photon vertex

As we have seen in the main text, the doubly off-shell
π0–γ∗–γ∗ vertex, defined as∫

d4xeil·x〈0|T{jµ(x)jν(0)}|π0(P )〉
= −iεµναβlαpβAπ0γ∗γ∗(l2, (P − l)2),

is a necessary ingredient for the calculation of the Dalitz
decay amplitude. While in the case of the one photon
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reducible contribution it is sufficient to use the corre-
sponding form factor Aπ0γ∗γ∗(0, l2) for l2 � M2

π , which
is the region where ChPT (with virtual photons) is ap-
plicable, for the leading one fermion reducible and one
particle irreducible contributions it is necessary to know
Aπ0γ∗γ∗(l2, (P − l)2) as a function of the momentum l
in the full range of the loop integration. In the present
appendix, we neglect temporarily the electromagnetic in-
teraction, so that Aπ0γ∗γ∗(l2, (P − l)2) will refer to the
strong matrix element. We briefly summarize some basic
properties of the form factor Aπ0γ∗γ∗(l2, (P − l)2) that
are general consequences of QCD, as well as the results
of [27], which we shall use in the sequel. The low energy
expansion of Aπ0γ∗γ∗ in the presence of both strong and
electromagnetic interactions will be the subject of the next
appendix.

General properties of the form factor Aπ0γ∗γ∗(l2, (P −
l)2) in QCD were investigated earlier within various ap-
proaches [40,41]. In the chiral limit, the on-shell value
of the form factor is entirely fixed by the QCD chiral
anomaly. Therefore, within ChPT the low energy behavior
is expected to be

Aπ0γ∗γ∗(l2, (P − l)2)

= − NC
12π2Fπ

[
1 + O

(
P · l
Λ2
H

,
l2

Λ2
H

,
mq

ΛH

)]
, (B.1)

where the higher order corrections come from pseudo-
Goldstone boson loops, as well as from higher order con-
tact terms. In particular,

Aπ0γ∗γ∗(0, 0) = − NC
12π2Fπ

[
1 + O

(
mq

ΛH

)]
. (B.2)

Another exact result, the leading short distance asymp-
totics for l → ∞ (P fixed), follows from the operator
product expansion (see [43]). For λ → ∞ we have

Aπ0γ∗γ∗((λl)2, (P − λl)2)

=
1

(λl)2
2
3
Fπ

[
1 +

1
λ

P · l
l2

+ · · ·
]
. (B.3)

The ellipsis stands for higher order terms in the short dis-
tance expansion, or for O(αs) QCD corrections to the
terms that are shown. Notice that the latter are not
affected by quark mass effects, so that (B.3) holds be-
yond the chiral limit. On the other hand, the expression
(B.3) assumes isospin and CP invariance of the strong
interactions. The explicit form of Aπ0γ∗γ∗(l2, (P − l)2)
in the intermediate energy range, however, is not known
from first principles. Among the various approaches that
have been considered, models inspired by the large-NC
properties of QCD have been proven particularly useful
in order to provide parameterizations of the form fac-
tor Aπ0γ∗γ∗(l2, (P − l)2) compatible with the above low
and high energy behaviors predicted by QCD. Let us give
here a brief overview of the results obtained in [27] within
this framework. At leading order in the 1/NC expansion,
Aπ0γ∗γ∗(l2, (P−l)2) can be expressed as infinite sum of the
tree-level exchanges of the zero-width resonances in the

various channels. Truncating this infinite sum and keep-
ing only the contribution of the lowest resonances, i.e. the
lowest vector meson octet in the present case, we obtain
the lowest meson dominance approximation to the large-
NC expression [26]

ALMD
π0γ∗γ∗(l2, (P − l)2) =

Fπ
3

l2 + (P − l)2 + κV
(l2 −M2

V )((P − l)2 −M2
V )
.

(B.4)
This Ansatz satisfies all the properties of Aπ0γ∗γ∗ dis-
cussed so far, provided the constant κV is chosen such
as to provide compatibility with (B.1),

κV =
3M4

V

Fπ
Aπ0γ∗γ∗(0, 0) = − NC

4π2F 2
π

M4
V (1 + C1 + · · · ).

(B.5)

The second equality involves the leading quark mass cor-
rections described by the combination of low energy con-
stants given in (C.13) and (C.14) below, while the el-
lipsis stands for higher order quark mass corrections,
that will not be considered here. Let us note that if the
large-NC vector meson mass is identified with the phys-
ical mass of the ρ meson, MV = Mρ, the form factor
ALMD
π0γ∗γ∗(l2, (P − l)2) contains C1 as the only free param-

eter, and interpolates smoothly between (B.1) and (B.3).
On the other hand, at low energy, the non-analytical con-
tributions from Goldstone boson intermediate states are
not taken into account (note that according to the large-
NC counting rules, meson loops are suppressed in the
1/NC expansion). As further discussed in [27], the simple
Ansatz (B.4) is not sufficient to describe the full asymp-
totic behavior for Q2 → ∞, where Q2 = −(q21 + q22) with
fixed ω = (q21 − q22)/(q21 + q22) = ±1, given by the general
formula [41]

Aπ0γ∗γ∗(q21 , q
2
2) = −4Fπ

3
f(ω)
Q2 + O

(
1
Q4

)
, (B.6)

with a function f(ω) that is not known explicitly. In or-
der to reconcile the large NC ansatz with (B.6), at least
one additional vector resonance is unavoidable. We thus
obtain, in the notation of [27], the more general Ansatz

ALMD+V
π0γ∗γ∗ (q21 , q

2
2)

=
Fπ
3

× (
q21q

2
2(q21 + q22) + κ1(q21 + q22)2 + κ2q

2
1q

2
2

+κ5(q21 + q22) + κ7
)

(B.7)

/
(
(q21 −M2

V1
)(q21 −M2

V2
)(q22 −M2

V1
)(q22 −M2

V2
)
)
.

The chiral anomaly now fixes

κ7 =
3M4

V1
M4
V2

Fπ
Aπ0γ∗γ∗(0, 0)

= −NC
4π2

M4
V1
M4
V2

F 2
π

(1 + C1 + · · · ), (B.8)
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while the large Q2 behavior of Aπ0γ∗γ∗(Q2, 0) requires
κ1 = 0. From experimental data one can also determine

κ5 = 6.93 ± 0.26 GeV4 (B.9)

(one takes MV1 = 769 MeV, MV2 = 1465 MeV, Fπ =
92.4 MeV; further details can be found in [27]). Finally,
as pointed out in [42], the coefficient κ2 is also available
from [43],

κ2 ∼ −4(M2
V1

+M2
V2

) = −10 GeV2, (B.10)

a value which lies within the range considered in [27].

Appendix C: Chiral expansion of the
pion–photon–photon vertex

In this appendix, we first summarize the results of our
recalculation of the pure QCD form factor Aπ0γ∗γ∗(0, l2)
in two-flavor chiral perturbation theory [17,20,44,30] up
to one loop, i.e. up to the order O(p6). After that, we
describe the additional modifications that appear if elec-
tromagnetic effects are also included.

C.1 e = 0

The relevant chiral Lagrangian can be written in the form

L = L(2) + L(4) + L(4)
WZW + L(6) + . . . ,

where the terms with even intrinsic parity at order O(p2)
and O(p4) are

L(2) =
F 2

0

4
〈DµU+DµU + χ+U + U+χ〉 (C.1)

L(4) =
l1
4

〈DµU+DµU〉2 +
l2
4

〈DµU+DνU〉〈DµU
+DνU〉

+
l3
16

〈χ+U + U+χ〉2

+
l4
4

〈DµUD
µχ+ +DµU+Dµχ〉

+ l5〈R̂µνUL̂µνU+〉
+ i

l6
2

(〈R̂µνDµUDνU+〉 + 〈L̂µνDµU+DνU〉)

− l7
16

〈χ+U − U+χ〉2

+
1
4
(h1 + h3)〈χ+χ〉

+
1
4
(h1 − h3)(detχ+ + detχ)

− 1
2
(l5 + 4h2)〈R̂µνR̂µν + L̂µνL̂

µν〉

+
h4

4
〈Rµν + Lµν〉〈Rµν + Lµν〉

+
h5

4
〈Rµν − Lµν〉〈Rµν − Lµν〉

)
. (C.2)

The odd intrinsic parity Wess–Zumino–Witten La-
grangian, which accounts for the two-flavor anomaly, can
be written in the form [44]

L(4)
WZW = − NC

32π2 ε
µνρσ

×
[
〈U+r̂µUl̂ν − r̂µ l̂ν + iΣµ(U+r̂νU + l̂ν)〉〈vρσ〉

+
2
3
〈ΣµΣνΣρ〉〈vσ〉

]
. (C.3)

In the above formulae, the notation is as follows:

U = e
iφ
F0 , φ =

(
π0

√
2π+

√
2π− −π0

)
, (C.4)

DµU = ∂µU − irµU + iUlµ, Σµ = U+∂µU, (C.5)
Rµν = ∂µrν − ∂νrµ − i[rµ, rν ],
Lµν = ∂µlν − ∂ν lµ − i[lµ, lν ], (C.6)

R̂µν = Rµν − 1
2
〈Rµν〉, L̂µν = Lµν − 1

2
〈Lµν〉, (C.7)

r̂µ = rµ − 1
2
〈rµ〉, l̂µ = lµ − 1

2
〈lµ〉, (C.8)

vµ =
1
2
(rµ + lµ),

vµν = ∂µvν − ∂νvµ − i[vµ, vν ]. (C.9)

Further relevant chiral invariant Lagrangians of order
O(p6) and also the other details can be found in [45,46]
and references therein.

The form factor Aπ0γ∗γ∗(0, l2) starts at the order
O(p4) with the tree graph with vertex derived from the
Wess–Zumino–Witten Lagrangian (C.3), and reproduces
the anomaly result (B.1),

ALO
π0γ∗γ∗(0, l2) = − NC

12π2F0
, (C.10)

since F0 can be identified with Fπ at this order. At the
next-to-leading order, there are two types of one loop con-
tributions with one vertex from L(4)

WZW, namely the tad-
pole and the bubble graphs (see Fig. 10). Another type
of contribution corresponds to the contact terms derived
from the tree graphs with one vertex from the odd intrin-
sic parity part of L(6). A last contribution comes from the
renormalization factor of the external pion leg; this one

Fig. 10. Next-to-leading order
corrections to πγγ vertex
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Fig. 11. π0 wave function renormaliza-
tion in next-to-leading order

contains the tadpole with vertex from L(2) and contact
terms with vertices from L(4) – see Fig. 11. Putting all
these parts together we obtain the following result:

Aπ0γ∗γ∗(0, l2)

= − NC
12π2Fπ

{1 + C1 (C.11)

− l2

6M2
π

[(
Mπ

4πFπ

)2(1
3

− 16π2σ2
π(l

2)J̄π(l2)
)

− C2

]}
,

where σP (s) ≡√1 − 4M2
P /s and

J̄P (s) =
s

16π2

∫ ∞

4M2
P

dx
x

σP (x)
x− s

(C.12)

is the Chew–Mandelstam function (the scalar bubble sub-
tracted at s = 0). In the above formula, we keep the neu-
tral and charged pion masses equal (within pure QCD
their difference is an effect of second order in the isospin
breaking parameter (mu−md)), the isospin breaking QED
corrections, which are, taking e = O(p), of the same or-
der as the leading order terms, will be taken into account
in the next section, where further details can be found.
Finally, C1 and C2 represent the following renormalization
scale independent combinations of the O(p6) low energy
constants Ai and ci introduced in [45,46] respectively:

C1 =
32
3
π2

×
[
(Ar

2 − 2Ar
3 − 4Ar

4)M
2
π +

20
3

(Ar
4 + 2Ar

6)2m̄B
]

=
64
3
π2 [(cr11 − 4cr3 − 4cr7)M

2
π

+
4
3
(5cr3 + cr7 + 2cr8)2m̄B

]
,

C2 = Cr
2(µ) −

(
Mπ

4πFπ

)2

ln
M2
π

µ2 , (C.13)

with m̄ = (md −mu)/2 and

Cr
2(µ) = −64π2M2

π(Ar
2 − 4Ar

3) = −64π2M2
πc

r
13. (C.14)

The renormalization of the external pion line is responsible
for the replacement of the constant F0 with the physical
decay constant Fπ in the leading order term of (C.11).

The actual values of the constants C1 and C2 are not
known from first principles. Recently the relevant combi-
nations of the low energy constants that occur in C2 have
been estimated in [27] by using the matching of the LMD
approximation to the large NC form factor ALMD(l2, 0)
and the large NC approximation to the ChPT result
AChPT(l2, 0). Since in the large-NC limit the contribu-
tion of meson loops is suppressed, the chiral logarithms

as well as the running of the renormalized couplings with
the renormalization scale µ are next-to-leading order ef-
fects. Following [47], we assume that the values of the low
energy constants obtained this way correspond to a scale
given by the mass scale of the non-Goldstone resonances
µ ∼ MV . We thus have the following LMD determination
of the low energy constant C2 [27]:

Cr
2(MV )LMD = 6

[
1 + C1 − 1

4NC

(
4πFπ
MV

)2
](

Mπ

MV

)2

.

(C.15)
The same procedure can be done with the LMD + V ap-
proximation; in this case we find [27]

Cr
2(MV )LMD+V

= 6
(
Mπ

4πFπ

)2
[
(1 + C1)

((
4πFπ
MV1

)2

+
(

4πFπ
MV2

)2
)

− 1
4NC

(
4πFπ
MV1

)2(4πFπ
MV2

)2
κ5

M2
V1
M2
V2

]
. (C.16)

The issue of the quark mass corrections to Aπ0γ∗γ∗(0, l2),
contained in C1, have been addressed in [48], and more
recently in [39]. From [39], one infers

C1 =
md −mu

ms − m̂
(0.93 ± 0.12) ± 0.14 · 10−2, (C.17)

with m̂ = (mu +md)/2.
Numerically, with (md − mu)/(ms − m̂) = 1/43,

Mπ = 135 MeV, Fπ = 92.4 MeV, MV = MV1 = 770 MeV,
MV2 = 1465 MeV and κ5 given by (B.9), we then have the
following determinations

C1 = (2.2 ± 0.3) × 10−2,

Cr
2(MV )LMD = (1.5 ± 0.5) × 10−1,

Cr
2(MV )LMD+V = (1.8 ± 0.6) × 10−1.

A 30% uncertainty, typical for a result based on a lead-
ing order large-NC calculation, has been assigned to C2.
Within these error bars, the LMD result is stable with re-
spect to the inclusion of a second resonance. Notice also
that a variation of the scale between, say, MV = MV1 and
MV = MV2 gives Cr

2(MV1)−Cr
2(MV2) = 0.02, which is well

within these error bars.

C.2 e �= 0

In this section we shall describe the results of our cal-
culation of the next-to-leading O(p6) corrections to the
leading order amplitude in the expansion scheme in which
the electric charge, fermion masses, and fermion bilinears
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are assumed to be counted as quantities of order p. Within
this scheme, the O(p2) Lagrangian reads

L(2) =
F 2

0

4
〈DµU+DµU + χ+U + U+χ〉

+ e2ZF 4
0 〈QUQU+〉

− 1
4
FµνF

µν + ψ(iγ · (∂ − ieA) −me)ψ,

where

Q = diag(2/3,−1/3)

is the quark charge matrix. Then the leading order ampli-
tude, which corresponds to the tree graph with one vertex
from L(4)

WZW, is of the order O(p4). Let us also note that
electromagnetic splitting of the charged and neutral pion
masses is treated as a leading order effect. The O(p4) La-
grangian with even intrinsic parity then reads

L(4) = L(4)
p4 + L(4)

e2p2 + L(4)
lept.

The L(4)
p4 is the same as (C.2) while the explicit form of

L(4)
e2p2 and L(4)

lept can be found in [20,23]. In the following
we need only

L(4)
e2p2 = F 2

0
{
k1〈DµU+DµU〉〈Q2〉

+ k2〈DµU+DµU〉〈QUQU+〉
+ k3

(〈DµU+QU〉〈DµU
+QU〉

+ 〈DµUQU+〉〈DµUQU
+〉)

+ k4〈DµU+QU〉〈DµUQU
+〉 + . . .

}
,

L(4)
lept = e2x6ψ(iγ · (∂ − ieA))ψ + e2x7meψψ

+ e2x8FµνF
µν + . . .

The NLO contributions within the pure QCD were pre-
sented in the previous section. In the enlarged case there
are two main distinctions: First, because the pion mass
difference is of order O(p2) now, we have to take care of
the unequal pion masses in the loops. Second, at order
O(p4), the pion decay constants Fπ0 and Fπ± are different
as a consequence of the new type of O(p4) terms coming
from L(4)

e2p2 , as well as of unequal tadpole contributions.
The mass difference leads to additional terms of the form
ln
(
M2
π±/M2

π0

)
, the latter to the replacement of F0 with

Fπ0 (and not with Fπ±) in the leading term as a result of
the renormalization of the external pion line. Taking all
these effects into account leads to

AChPT(l2, 0)

= − NC
12π2Fπ0

(C.18)

× {1 + C1

− l2

6M2
π±

[
M2
π±

16π2F 2
π

×
(

1
3

+ ln
M2
π±

M2
π0

− 16π2σ2
π+(l2)J̄π+(l2)

)
− C2

]}
,

with C1 and C2 now given by

C1 =
32
3
π2

×
[
(Ar

2 − 2Ar
3 − 4Ar

4)M
2
π0 +

20
3

(Ar
4 + 2Ar

6)2m̄B
]

=
64
3
π2

× [
(cr11 − 4cr3 − 4cr7)M

2
π0

+
4
3
(5cr3 + cr7 + 2cr8)2m̄B

]
,

C2 = −64π2M2
π±(Ar

2 − 4Ar
3) − M2

π±

16π2F 2
π

ln
M2
π0

µ2

= −64π2M2
π±cr13 − M2

π±

16π2F 2
π

ln
M2
π0

µ2 .

Because the constant Fπ0 is not known very accurately,
we use the following relation [24,25]:

Fπ0 = Fπ

(
1 − M2

π±

16π2F 2
π

ln
M2
π±

M2
π0

− e2

64π2 KF

)
(C.19)

with

KF = (3 +
4
9
Z)k̄1 − 40

9
Zk̄2 − 3k̄3 − 4Zk̄4 (C.20)

to eliminate Fπ0 in favor of Fπ, where Fπ = Fπ± |e=0 is
measured in the charged pion decays [39]. We thus write

AChPT(l2, 0) = − NC
12π2Fπ

(
1 + aChPT

NLO (l2)
)
,

where

aChPT
NLO (l2)

= C1 +
e2

64π2 KF +
M2
π±

16π2F 2
π

ln
M2
π±

M2
π0

− l2

6M2
π±

[
M2
π±

16π2F 2
π

(C.21)

×
(

1
3

+ ln
M2
π±

M2
π0

− 16π2σ2
π+(l2)J̄π+(l2)

)
− C2

]
.

The k̄i, i = 1, . . . , 4 are the a priori unknown scale
independent constants, defined in terms of the bare low
energy constants from L(4)

e2p2 according to the formulae

ki = kr
i(µ)

+
σi

(4π)2

(
1

d− 4
− 1

2
(ln 4π − γ + 1)

)
,

kr
i(µ) =

σi
2(4π)2

(
k̄i + ln

M2
π0

µ2

)
,
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where

σ1 = −27
20

− 1
5
Z, σ2 = σ4 = 2Z, σ3 = −3

4
. (C.22)

In order to obtain a numerical evaluation of KF we
further express it in terms of the analogous SU(3) con-
stants Ki. Several determinations of the latter are avail-
able in the literature [37]. In the most recent work [38],
a new estimate of these parameters based on sum rules
involving QCD four point correlators (for the SU(3) case,
parametrized with help of the improved chiral Lagrangian
with resonances in the spirit of large-NC approximation)
was made. In order to use these results, we first have to
match the SU(3) variant of the theory with the SU(2)
one we have used in our calculation. This can be done as
follows. Starting from the fact that KF enters the formula
(C.19) expressing the electromagnetic difference between
Fπ ≡ Fπ± |e=0 and Fπ0 , we can write (in the SU(2) case)

e2

64π2 KF = 1 − Fπ0

Fπ
− M2

π±

16π2F 2
π

ln
M2
π±

M2
π0

. (C.23)

The ratio Fπ0/Fπ can be calculated within the SU(3) ver-
sion with the result11 [21]

Fπ0

Fπ

∣∣∣∣
SU(3)

= 1 − M2
π±

16π2F 2
π

ln
M2
π±

M2
π0

− e2Z

32π2

(
4 ln

(
M2
π0

µ2

)
+ ln

(
M2
K+

µ2

)
+ 1
)

+ e2
(

4
3
Kr

1 +
4
3
Kr

2 − 2Kr
3 +Kr

4 +
10
9
Kr

5 +
10
9
Kr

6

)
;

therefore, upon matching the two expressions, it follows
that12

e2

64π2 KF

= 1 − Fπ0

Fπ

∣∣∣∣
SU(3)

− M2
π±

16π2F 2
π

ln
M2
π±

M2
π0

(C.24)

=
e2Z

32π2

(
4 ln

(
M2
π0

µ2

)
+ ln

(
M2
K+

µ2

)
+ 1
)

− e2
(

4
3
Kr

1 +
4
3
Kr

2 − 2Kr
3 +Kr

4 +
10
9
Kr

5 +
10
9
Kr

6

)
.

Inserting into this expression the values Kr
1 = −2.71 ×

10−3, Kr
2 = 0.69 × 10−3, Kr

3 = 2.71 × 10−3, Kr
4 =

11 The known experimental value of Fπ0 = 92±4 MeV has an
uncertainty too large to provide a useful determination of KF .
12 Let us note that the SU(3) on-shell πγγ amplitude [39]
contains (besides the electromagnetic difference between Fπ
and Fπ0) an additional O(e2) contribution which originates in
the electromagnetic correction to the πη mixing. Within the
SU(2) power counting it is in fact of the order O(e2p2), so
that it need not be included in the matching procedure.

1.38 × 10−3, Kr
5 = 11.59 × 10−3 and Kr

6 = 2.77 × 10−3

at a scale µ = 770 MeV, obtained in [38] from the lowest
meson dominance approximation to the large-NC limit of
appropriate QCD correlators we find

KF = −28 ± 8.

Again, we have assigned to this value an uncertainty of
30%, typical for calculations based on the leading order
in the large-NC expansion. Although KF is scale inde-
pendent, the estimates of the low energy constants Kr

i (µ)
it involves depend on the scale at which they are identi-
fied with the resonance approximation. Varying again this
scale between the values MV = MV1 and MV = MV2 in-
duces a variation in Kr

F which corresponds to these same
error bars.

Appendix D: NLO corrections to F 1, F 2, Π

D.1 Corrections to the vacuum polarization function

The vacuum polarization function Π(l2) starts at O(p2)
with three types of contributions,

Π(l2) = Ππ±(l2) +Πe±(l2) +ΠCT(l2),

where the first two correspond to the pion bubble and
tadpole, and to the fermion bubble, respectively, and the
third one is a contact term from L(4), which is necessary
to renormalize the UV divergences. In dimensional regu-
larization one has

Ππ±(s) = Ππ±(s) − α

12π

(
ln
M2
π±

µ2 + 1
)

− α

6π

[
1

d− 4
− 1

2
(ln 4π − γ + 1)

]
,

Πe±(s) = Πe±(s) − α

3π

(
ln
m2

µ2 + 1
)

(D.1)

− 2α
3π

[
1

d− 4
− 1

2
(ln 4π − γ + 1)

]
,

where Π are the corresponding quantities in the on-shell
renormalization scheme in which the finite part of the
counterterms is unambiguously fixed by the condition
Π(0) = 0. We have then the standard result

Ππ±(s) =
α

π

s

12

∫ ∞

4M2
π±

dx
x

σ3
π±(x)
x− s

=
α

18π

[
1 + 24π2σ2

π±(s)J̄π±(s)
]

(D.2)

and

Πe±(s) =
α

π

s

3

∫ ∞

4m2

dx
x

σe±(x)
x− s

(
1 +

2m2

x

)
(D.3)

=
α

9π

[
1 + 48π2

(
1 +

2m2

s

)
J̄e±(s)

]
.
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In our notation the O(p4) counterterms contribute as

ΠCT(s) = 16πα
(

2h2 − 1
9
h4 − x8

)
,

where

h2 = hr
2(µ)

+
1
12

1
(4π)2

(
1

d− 4
− 1

2
(ln 4π − γ + 1)

)
,

h4 = hr
4(µ),

x8 = xr
8(µ) − 2

3
1

(4π)2

(
1

d− 4
− 1

2
(ln 4π − γ + 1)

)
.

While h2 renormalizes the divergent part of Ππ±(s), x8
does the same with Πe±(s). Note that in this scheme
Π(0) �= 0 and, as a consequence, renormalization of the
external photon line has to be included by means of the
factor

Z1/2
γ = 1 − 1

2
Π(0)

= 1 − 8πα
(

2hr
2(µ) − 1

9
hr

4(µ) − xr
8(µ)

)
+

α

6π

(
ln
m2

µ2 + 1
)

+
α

24π

(
ln
M2
π±

µ2 + 1
)
.

D.2 Corrections to the fermion self-energy

In the same way, we can recalculate the fermion self-energy

Σ(q) = /qΣV (q2) +ΣS(q2),

with the loop and counterterm contributions

ΣS,V (q2) = Σloop
S,V (q2) +ΣCT

S,V (q2),

where (to regularize infrared divergences we have to intro-
duce virtual photon mass mγ)

Σloop
S (q2)

= −mα

π

∫ 1

0
dx ln

x(m2 −m2
γ) − x(1 − x)q2 +m2

γ

m2

− m
α

π

(
ln
m2

µ2 +
3
2

)
− m

2α
π

(
1

d− 4
− 1

2
(ln 4π − γ + 1)

)
,

Σloop
V (q2)

=
α

2π

×
∫ 1

0
dx(1 − x) ln

x(m2 −m2
γ) − x(1 − x)q2 +m2

γ

m2

+
α

4π

(
ln
m2

µ2 + 2
)

+
α

2π

(
1

d− 4
− 1

2
(ln 4π − γ + 1)

)
and

Σct
S (q2) = −4παmx7,

x7 = xr
7(µ)

− 8
(4π)2

(
1

d− 4
− 1

2
(ln 4π − γ + 1)

)
,

Σct
V (q2) = −4παx6,

x6 = xr
6(µ)

+
2

(4π)2

(
1

d− 4
− 1

2
(ln 4π − γ + 1)

)
.

From these formulae, the fermion mass renormalization
follows:

m = me +ΣS(m2) +mΣV (m2)
= me −m (4πα(xr

7(µ) + xr
6(µ))

+
α

π

(
3
4

ln
m2

µ2 − 1
4

))
,

where m is the physical fermion mass. For the fermion
wave function renormalization we need

∂Σ(q)
∂/q

∣∣∣∣
/q=m

= 2mΣ′
S(m2) +ΣV (m2) + 2m2Σ′

V (m2)

=
α

π

(
1
2

ln
m2

m2
γ

+
1
4

ln
m2

µ2 − 4π2xr
6(µ) − 3

4

)
.

Thus, one has

Z−1
ψ = 1 − ∂Σ(q)

∂/q

∣∣∣∣
/q=m

= 1 − α

π

(
1
2

ln
m2

m2
γ

+
1
4

ln
m2

µ2 − 4π2xr
6(µ) − 3

4

)
.

D.3 Corrections to the form factors F1,2

We have the following standard formula for M2
π0 > s >

4m2,

F2(s) =
α

π

m2

sσe(s)

[
ln
(

1 − σe(s)
1 + σe(s)

)
+ iπ

]
(D.4)

and

(F1(s) − 1)|loop

= −1
2
α

π

(
1

d− 4
− 1

2
(ln 4π − γ + 1)

)
+
α

π

{
−3

4
− 1

4
ln
m2

µ2 + 4π2Je(s)

+
1
2

(
1 −m2 ∂

∂m2 16π2Je(s)
)}
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+
α

π

(
1
2
s−m2

)
×
{(

1
2

ln
m2

m2
γ

− 1
)

1
m2

(
1 −m2 ∂

∂m2 16π2J̄e(s)
)

+
1
2

∫ 1

0

1
m2 − sx(1 − x)

ln
m2 − sx(1 − x)

m2

}
.

The counterterm contribution is

FCT
1 (s) = 4απx6.

We can compare now

Z−1
1 = F1(0)

= 1 +
α

π

{
3
4

− 1
4

ln
m2

µ2 − 1
2

ln
m2

m2
γ

+ 4π2xr
6(µ)

}
= Z−1

ψ ,

where the last identity is a consequence of the Ward iden-
tity.

D.4 Complete 1γR LO + NLO form factors

Putting the results of the previous subsections together
one obtains (note that we must include the external line
renormalization factor Z1/2

γ Zψ)

P 1γR;LO(x, y) + P 1γR;NLO(x, y)

=
e3NC

12π2Fπ

1
xM2

π0

i
m
F2(xM2

π0),

A1γR;LO(x, y) +A1γR;NLO(x, y)

= − e3NC
12π2Fπ0

i
xM2

π0

[
F1(xM2

π0) −Π(xM2
π0)

+ (Z1/2
γ − 1) + (Zψ − 1) + aChPT

NLO (xM2
π0)
]
,

T 1γR;LO(x, y) + T 1γR;NLO(x, y) (D.5)

= − e3NC
12π2Fπ0

i
xM2

π0

[
2m
(
F1(xM2

π0) −Π(xM2
π0)

+ (Z1/2
γ − 1) + (Zψ − 1)

+ aChPT
NLO (xM2

π0)
)

+
xM2

π0

2m
F2(xM2

π0)
]
.

Let us write Π(s) = Π(s) −Π(0) = Π(s) + (Zγ − 1) and
define F 1(s) = 1 + F1(s) − F1(0) = F1(s) + (Zψ − 1).
Explicitly, for M2

π0 > s > 4m2,

Π(s)

= Ππ±(s) +Πe±(s)

=
α

π

{
1 +

2
3

2m2 −M2
π±

s

− 1
6
σ2
π±(s)

∣∣σπ±(s)
∣∣ arctan

(
1

|σπ±(s)|
)

+
1

3sσe(s)
ln
(

1 − σe(s)
1 + σe(s)

)(
s− 2m2 − 8m4

s

)
+

iπ
3sσe(s)

(
s− 2m2 − 8m4

s

)}
, (D.6)

F 1(s)

= 1 +
α

π
{−1

+
1

sσe(s)

[(
2m2 − 3

4
s

)
ln
(

1 − σe(s)
1 + σe(s)

)
− (s− 2m2)

×
(

1
4

ln
(

1 − σe(s)2

4σe(s)2

)
ln
(

1 − σe(s)
1 + σe(s)

)
+ Li2

(
σe(s) − 1
2σe(s)

)
+

1
2

ln
(

1 − σe(s)
2σe(s)

)
ln
(

1 + σe(s)
2σe(s)

)
− π2

3

)]
+

iπ
sσe(s)

×
[(

2m2 − 3
4
s

)
− 1

2
(s− 2m2) ln

(
1 − σe(s)2

4σe(s)2

)]}
+

α

2π
ln
(
m2

m2
γ

)
(D.7)

×
{

1 + (s− 2m2)
1

sσe(s)

[
ln
(

1 − σe(s)
1 + σe(s)

)
+ iπ

]}
.

Then, taking F 2(s) = F2(s) and introducing a physical
charge e = eZ

1/2
γ (where e2/(4π) = α = 1/137, . . .), we

can rewrite (D.5) in the form

P 1γR,L(x, y) + P 1γR,NL(x, y)

=
e3NC

12π2Fπ

1
xM2

π0

i
m
F 2(xM2

π0),

A1γR,L(x, y) +A1γR,NL(x, y)

= − e3NC
12π2Fπ

i
xM2

π0

×
[
F 1(xM2

π0) −Π(xM2
π0) + aChPT

NLO (xM2
π0)
]
,

T 1γR,L(x, y) + T 1γR,NL(x, y)

= − e3NC
12π2Fπ

i
xM2

π0

[
2m(F 1(xM2

π0) −Π(xM2
π0)

+ aChPT
NLO (xM2

π0)) +
xM2

π0

2m
F 2(xM2

π0)
]
.

Identifying now the leading order amplitude with the sub-
stitution F 1 = 1, F 2 = Π = aChPT

NLO = 0 in the above
expressions, and using (3.7) we obtain

δ1γRNLO(x, y)

= 2Re
[
F 1(xM2

π0) −Π(xM2
π0) + aChPT

NLO (xM2
π0)

+
2xM2

π0

M2
π0x(1 + y2) + 4m2F2(xM2

π0) − 1
]
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and

δ1γRNLO(x)

= 2Re
[
F 1(xM2

π0) −Π(xM2
π0) + aChPT

NLO (xM2
π0)

+
3
2

xM2
π0

M2
π0x+ 2m2F2(xM2

π0) − 1
]
.

Before concluding this section, let us give a brief survey
of the IR divergent contributions. They can be extracted
from the formulae given above and read

F 1(s)IR div

=
α

2π
ln
(
m2

m2
γ

)
×
{

1 + (s− 2m2)
1

sσe(s)

[
ln
(

1 − σe(s)
1 + σe(s)

)
+ iπ

]}
,

F 2(s)IR div = Π(s)IR div = 0.

Thus, the IR divergent parts of the form factors are

δPIR div(x, y) = 0,
δAIR div(x, y)

=
1

2m
δTIR div(x, y) = − e3NC

12π2Fπ

i
xM2

π0

F 1(xM2
π0)IR div.

Inserting these expressions into formula (3.7) yields, after
some simple algebra,

δ1γRNLO(x, y)IR div

=
e2

(2π)2
ln
(
m2

m2
γ

)
×
{

1 +
(

1 − 2m2

xM2
π0

)
1

σe(xM2
π0)

× ln
(

1 − σe(xM2
π0)

1 + σe(xM2
π0)

)}
. (D.8)

Appendix E: Loop functions

This appendix is devoted to the so-called Passarino–
Veltman [49] one loop integrals used in the main text.
Generally one defines (working in d dimensions):13

iπ2T0(n) (E.1)

= (2πµ)4
∫

ddl
(2πµ)d

1
[l2 −m2

1] . . . [(l + pn)2 −m2
n]
.

It is, then, common to denote these n point functions in
alphabetical order, i.e. instead of T one uses for one point
integral the symbol A, for n = 2 – the B and so on. For the

13 Notice that according to this definition the loop functions
are renormalization scale dependent and consequently the bare
LECs are also scale dependent.

scalar functions and special combinations of arguments
needed in our work we get successively

B0(0,m2,m2) (E.2)

= −2
[

1
d− 4

− 1
2
(ln 4π − γ + 1)

]
− ln

m2

µ2 − 1,

B0(m2
±, 0,m

2)

= −2
[

1
d− 4

− 1
2
(ln 4π − γ + 1)

]
− ln

m2

µ2 + 16π2J̄0m(m2
±)

= −2
[

1
d− 4

− 1
2
(ln 4π − γ + 1)

]
− ln

m2

µ2 + 1 −
(

1 − m2

m2±

)
ln
(

1 − m2
±

m2

)
. (E.3)

C0(0,m2
±,m

2;m2,m2, 0)

=
π2 − 6Li2

(
m2

±
m2 + iε

)
6(m2± −m2)

. (E.4)

ReC0(m2,M2
π ,m

2
±;m2, 0, 0)

∣∣
m<m±<Mπ

=
1√
λ

{
2Li2

(√
λ+M2

π

M2
π

)

+ Li2

(
1 − 2

√
λ√

λ−m2± +m2 +M2
π

)

− Li2

(
1 − 2

√
λ√

λ+m2± −M2
π −m2

)
− Li2 (1 (E.5)

+
2
√
λm2

(m2± −m2)(
√
λ+m2± −m2) − (m2± +m2)M2

π

)
+ Li2 (1

+
2
√
λ(m2 −m2

±)

(m2± −m2)(
√
λ+m2± −m2) − (m2± +m2)M2

π

)
− Li2 (1

− 2
√
λm2

±
(m2± −m2)(

√
λ−m2± +m2) + (m2± +m2)M2

π

)

− π2

6

}
,

with λ = λ(M2
π ,m

2
±,m

2) = (M2
π −m2 −m2

±)2 − 4m2m2
±,

and m2
± = m2 + δm2

±, where δm2
± = 2k · q1,2 = 1

2 (1 −
x)(1 ± y)M2

π .
The four point function appearing in Sect. 4.3 is given

by

ReD0(m2, 0,m2,M2
π ,m

2
+,m

2
−; 0,m2,m2, 0)

=
2y

M2
πm

2(y2 − 1)
(E.6)
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×
{

log
(m2

+ −m2)(m2
− −m2)

M2
πm

2 log y

+ Li2(1 − y) − Li2(1 − y−1)
}
, (E.7)

where y = 1
2a (−b+

√
b2 − 4ac), with

a = c =
M2
π

m2 ,

b =
−1
m4

(
(m2

+ −m2)(m2
− −m2) + 2M2

πm
2).

Asymptotics of the loop functions for k → 0 (x → 1),
m fixed, read

B0(m2
±; 0,m2)

= 2 +B0(0,m2,m2) − δm2
±

m2

[
ln
(
δm2

±
m2

)
+ iπ

]
+ O
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δm2

±
m2

)2)
,

C0(0,m2
±,m
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=
1
m2

[
ln
(
δm2

±
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)
+ iπ − 1

]
− 1

4
δm2

±
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[
2 ln

(
δm2

±
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)
+O(1)

]
+O

((
δm2

±
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)2)
,

C0(m2,M2
π ,m

2
±,m

2, 0, 0)

= C0(m2,M2
π ,m

2,m2, 0, 0)

− 1
M2
π
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±
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ln
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δm2

±
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)
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]
,

D0(m2, 0,m2,M2
π ,m

2
+,m

2
−, 0,m

2,m2, 0)

=
1

m2M2
π

ln
(
δm2

+δm
2
−

M2
πm

2

)
+O(1).

Asymptotics of the loop functions for m → 0, δm2
± > 0

fixed, read

ReB0(m2
±; 0,m2)

= −2
(

1
d− 4

− 1
2
(ln 4π − γ + 1)

)
+ 1 − ln

(
δm2

±
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)
+O(m2),
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+
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]
,
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1
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)(
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,
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2
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ln2
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M2
π

)
− ln
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)
ln
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−
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1
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(
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−
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.

Appendix F: Soft photon singularities

In this appendix, we briefly address the question of soft
photon singularities, which are of relevance for the dis-
cussion in Sect. 3.3. We wish in particular to elaborate
in somewhat greater detail on the statement made at
the beginning of Sect. 3.3, concerning the absence of con-
tributions that are independent of kµ in the difference
Mπ0→e+e−γ−MLow

π0→e+e−γ . In the present context, we may
arrive at this result as follows. First, note that the Ward
identity (2.22) can be solved by the expression14

Γ 1ψR,pole
µ (p+, p−, k)

= e
2p−µ − ae

m (p−µ/k − γµ(p− · k)) − iσµνkν(1 + ae)
2(p− · k)

× Γπ0e−e+(p− + k, p+)
− eΓπ0e−e+(p−, p+ + k)

× 2p+µ − ae

m (p+µ/k − γµ(p+ · k)) + iσµνkν(1 + ae)
2(p+ · k)

(where ae = F 2(0) is the anomalous magnetic moment
of the fermion), which includes the leading and next-to-
leading order singularities for k → 0. Indeed, for the com-
bination

εµ(k)∗uΛµ(p−, p− + k)S(p− + k)v,

it is not difficult to prove that, for k such that (p− ·k) → 0,
with p2

− = m2 and p− fixed,

εµ(k)∗uΛµ(p−, p− + k)S(p− + k)
= εµ(k)∗u

× 2p−µ − ae

m (p−µ/k − γµ(p− · k)) − iσµνkν(1 + ae)
2(p− · k)

14 Of course, the minimal solution can be written in the form

Γ 1ψR = e

[
p−

(p− · k)
Γπ0e−e+(p− + k, p+)

− p+

(p+ · k)
Γπ0e−e+(p−, p+ + k)

]
,

which takes into account only the leading order singularity for
k → 0.
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+ O(1) + O(k, (p− · k)).
Here (and in what follows), the remaining O(1) terms,
which are not written explicitly, are independent of k. In
the same way, for k, (p+ · k) → 0, p2

+ = m2 and p+ fixed,
we find

S(−p+ − k))Λµ(−p+ − k,−p+)vεµ(k)∗

=
−2p+µ + ae

m (p+µ/k − γµ(p+ · k)) − iσµνkν(1 + ae)
2(p+ · k)

×vεµ(k)∗

+ O(1) + O(k, (p+ · k)).
Notice that if in the above expressions one restricts the
vertex function Λµ(q1, q2) to its longitudinal part given
by (2.17), one arrives at the same expression, but with
ae replaced by −ΣV (m2), which is both gauge dependent
and infrared divergent. Including the contribution from
the transverse part ΛT

µ (q′, q) cures both problems, and
yields the anomalous magnetic moment ae. This can be
checked explicitly at the one loop level with the expres-
sions available in [31,32].

Let us recall that the one particle irreducible (semi-)
off-shell π0–e−–e+ vertices Γπ0e−e+(p− + k, p+) and
Γπ0e−e+ (p−, p+ + k) are free of poles for (p± · k) → 0.
The same is true for the one particle irreducible (semi-)
off-shell e+–e−–γ vertices Λµ(p−, p− + k) and Λµ(−p+ −
k,−p+). We have therefore, for (p± · k), k → 0 and p±
fixed, according to (2.25),

M1ψR
π0→e+e−γ

= eεµ(k)∗u

×
[
2p−µ − ae

m (p−µ/k − γµ(p− · k)) − iσµνkν(1 + ae)
2(p− · k)

+
−2p+µ − ae

m (p+µ/k − γµ(p+ · k)) − iσµνkν(1 + ae)
2(p+ · k)

]
×γ5vPπ0e−e+(m2,m2)

+ O(1) + O(k, (p+ · k)),
where, as above, the implicit O(1) terms are independent
of k. From this formula we can read off the associated
Low amplitude given in (3.21) which, according to Low’s
theorem [36], corresponds to the leading singular terms in
the expansion of the complete amplitude in k, (p± · k) →
0 , (with p± fixed) in the sense that the k-independent
O(1) terms coming from Γ 1ψR

µ are in fact cancelled in
the complete amplitude Mπ0→e+e−γ by the corresponding
O(1) terms from the Γ 1PI

µ (let us recall that the one photon
reducible amplitude is of order O(k)). On the other hand,
we have15

M1ψR,pole
π0→e+e−γ

15 Here we use the identities

2p−µ − ae
m

(p−µ/k − γµ(p− · k)) − iσµνkν(1 + ae)
2(p− · k)

=
(

γµ +
i

2m
aeσµνk

ν

)
1

(/p− + /k) − m

= εµ(k)∗uΓ 1ψR,pole
µ v

= MLow
π0→e+e−γ + O(1) + O((p+ · k), k).

Therefore, the following subtracted quantity

Γ 1ψR,reg
µ = Γ 1ψR

µ − Γ 1ψR,pole
µ = O(1) + O((q1 · k), k)

is both transverse; the O(1) terms are independent of k.
It can thus be expressed in terms of form factors P , A±,
T , see (2.6),

Γ 1ψR,reg(p+, p−, k)

= P 1ψR,reg(x, y)[(k · p+)pµ− − (k · p−)pµ+]γ5

+ A1ψR,reg
+ (x, y)[/kpµ+ − (k · p+)γµ]γ5

− A1ψR,reg
− (x, y)[/kpµ− − (k · p−)γµ]γ5

− iT 1ψR,reg(x, y)σµνkνγ5.

Because these form factors are in fact O(1), i.e. Γ 1ψR,reg
µ =

O((p+ · k), k) and also Γ 1γR
µ = O(k), we may conclude

that the contribution of Γ 1ψR,reg
µ is tiny (it is suppressed

by a factor α with respect to Γ 1γR
µ ) in the full kinematical

region ν2 ≤ x ≤ 1. On the other hand, we should expect
that the remaining gauge invariant combination, namely

M1PI
π0→e+e−γ+M1ψR,pole

π0→e+e−γ = MLow
π0→e+e−γ+O(k, (p± ·k)),

(F.1)
might be important for x sufficiently close to one (i.e. k →
0) in spite of the suppression by a factor α.

In (F.1), the one particle irreducible part of the am-
plitude

M1PI
π0γ∗γ∗ = uΓ 1PI

µ (p+, p−, k)vεµ(k)∗

corresponds to the photon emission from internal lines,
being therefore of the order O(1) for k → 0. Notice also
that the Low amplitude is transverse; therefore we can de-
compose it in terms of PLow, ALow

± and TLow form factors,
where

PLow = e
Pπ0e−e+(m2,m2)
(p− · k)(p+ · k) = 16e

Pπ0e−e+(m2,m2)
M4
π0(1 − x)2(1 − y2)

,

ALow
± = e

ae
m

Pπ0e−e+(m2,m2)
2(k · p±)

= 2e
ae
m

Pπ0e−e+(m2,m2)
M2
π0(1 − x)(1 ± y)

,

TLow = e(1 + ae)Pπ0e−e+(m2,m2)

×
(

1
2(p− · k) +

1
2(p+ · k)

)
= 4e(1 + ae)

Pπ0e−e+(m2,m2)
M2
π0(1 − x)(1 − y2)

. (F.2)

and

S−1(p− + k)
= (1 − ΣV (m2))((/p− + /k) − m) + O(p− · k).
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